
Greedy Implementation of Neural Networks Gradient Descent
Abram Perdanaputra - 135160831
Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika
Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

1abram.perdanaputra@gmail.com

Abstract—. Artificial General Intelligence or more commonly
Artificial Intelligence (AI) is gaining its fame because how big is
its potential to solve the currently unsolved problems. AI can be
extended into many kind of field such as medical, transportation,
education, civil, and many other. AI is using Machine Learning
(ML) algorithms to learn and predict solution. The goal of
common ML models is how to minimize the error prediction.
Without us knowing, one of the AI model which is Neural
Network is using Greedy technique to minimize its loss function.
Every training sessions, the Neural Network wil forward pass and
do backpropagation using Gradient Descent —which is a Greedy
technique — to adjust the weights to minimize the loss function.

Keywords—Greedy, Neural Network, Gradient Descent,
Artificial Intelligence.

I. INTRODUCTION
These days, Artificial Intelligence (AI) is gaining popularity.

Many companies boasts that their product is AI-powered so
that it could be superpower to common people. Products such
as self driving cars, personal assistant, videos / article
recommenders, image recognition, pattern generator, and many
other kind of products that is using AI to work better and help
humans better.

The society is having many different perceptions of AI.
Some people doesn’t even know how AI works, others are very
excited on how it is helping human lives, others work to use AI
to save many human lives, but under the hood, all of AI is pure
and simple calculus math. One common and very basic AI
model is the Artificial Neural Network. It’s the base model that
inspires other models such as Convolutional Neural Network,
Recurrent Neural Network, Associative Neural Network, and
many other types of Neural Network (NN). How’s Neural
Network able to solve problems?

II. THEORY
When trying to solve problem, humans tend to see the best

solution available to pick, but in sequential problem, this kind
of selection method doesn’t always give the optimum solution
we’re looking for. That’s how Greedy technique sees things
when trying to solve a certain problem. Greedy approach
suggests constructing solution through a sequence of steps,
each each expanding a partially constructed solution obtained
so far, until the complete solution to the problem is reached [1].
On each step, the solution must be feasible — satisfying the
problem constraints—, locally optimal — best local choice that
can be taken—, and irrevocable — once its taken, there’s no
turning back. These requirements explains Greedy’s name. On
each step, we have to be “greedy” to grab the best alternative

possible solution available hoping that the sequence of locally
optimal solution gives us the global solution to the entire
problem.

By this time, there are many Greedy technique algorithms
that able to find the optimal solutions at all times such as Prim
and Kruskal’s algorithm to find the minimum spanning tree
given a graph, Dijkstra’s algorithm to find the shortest path to
all other vertices given a graph and it’s source vertex, and
Huffman Trees and Codes to compress a sequence of strings.
But there are many problems that Greedy technique couldn’t
solve such as Coin Partition Problem, Traveling Salesperson
Problem (TSP), Integer Knapsack Problem, and many other. In
this Neural Network problem, Greedy technique cannot be
guaranteed to give the optimal solution at all times.

Before diving further, we have to describe what NN is and
define the problem we’re trying to solve. Neural Network is a
sequence of layers that consists of nodes, weights to connect
one node to another, and optionally bias for each node. Here,
we define a node is as simple as something that holds a
number. The structure of a simple NN is given in Figure 1.1.

Figure 2.1 Neural Network structure.
Source : https://medium.com/@curiousily/tensorflow-for-hackers-

part-iv-neural-network-from-scratch-1a4f504dfa8

Figure 1.1 shows that a NN consists of one input layer, one
output layer, and hidden layer with any arbitrary number of
layers inside it. It also shows that every node have some kind
of connection to every node in the next layer called weights. It
represents how strong is a node effecting a node in the next
layer. For example, w41 represents how’s the node 1 effects the
node 4. The weight could be negative—the node 4 doesn’t like
if the node 1 is high—, positive— the node 4 is higher if the
node 1 is high—, or zero—node 1 doesn’t affect node 4 at all.

A NN receives input and will place the inputs to the input
layer to become the nodes value. Here we call the node’s value
as activation. To calculate the activation of a node, simply just
calculate the “weighted sum” of its input, add the bias, and
decide whether to activate of not activate the node.

IF2211 Strategi Algoritma – Sem. II 2017/2018

https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-network-from-scratch-1a4f504dfa8
https://medium.com/@curiousily/tensorflow-for-hackers-part-iv-neural-network-from-scratch-1a4f504dfa8

(a) !
(b) !

Figure 2.2 (a) Weighted sum of a node (b) Activation of a node

In NN, we decide to activate or not activate a node by
applying a function called activation function. Activation
function could be any function you would like, but the most
common ones are Sigmoid function, ReLU function, Softmax
function, and Step function. That’s all the basics needed for
knowing how is Neural Network using a Greedy technique to
solve problems.

 III. GREEDY IMPLEMENTATION ON NEURAL NETWORK
Every Machine Learning model needs a set of data to learn

from. In Machine Learning, there’s two kind of learning
process, Supervised Learning and Unsupervised Learning. The
difference between those two are Supervised Learning tells the
model what’s the correct result from a given input.
Unsupervised Learning doesn’t tell what’s the expected output.
The problem domain of Supervised and Unsupervised learning
is given to the reader for research. In this problem, we’re using
Supervised Learning to train the Neural Network model to
tackle a given problem.

One other essential component of a Neural Network model
is the loss function. A loss function is how we measure the
performance of how’s the model is doing, is it nearly correct or
is it giving us utter mess. We can define many kind of loss
functions, but the most common ones are Cross Entropy, Mean
Squared Error, Hinge Loss, and Huber Loss. For simplicity
sake, we’re using Mean Squared Error loss function for easy
use.

!

Figure 3.1 Mean Squared Error loss function.
Source : author

To compute the error, simply find the difference between
every expected output and the output layer activation and
square those values. Keep doing it for all the nodes in output
layer and sum all the squared difference. Divide the sum by the
number of nodes in the layer. This gives the mean squared
error of the output layer given an expected output.

We already reviewed how the NN performance is evaluated.
Now we can continue how Greedy technique is used on Neural
Networks. First, we do forward pass to find the output layers
activation. The activation of the output layer is the NN’s
prediction. When we have the NN’s prediction for a given
input, we measure the loss/error of the NN by using the loss
function. The training sequence of a NN is evaluate the
activation, count the loss function, and adjust the weights to
minimize the loss function.

Here goes the Greedy technique. The problem is we need to
find a global minimum of the loss function. To adjust the
weights, we compute the the gradient of the loss function. We
know from Figure 3.1 that our Mean Squared Error loss
function has two random variables, so we need to find how’s
each parameter affect the loss function. For example, we
compute the gradient of loss function over wi to find in what wi
direction we have to go to minimize the loss function faster.
We’ll cover the details in the upcoming section below.

Figure 3.2 Gradient descent example.
Source : https://medium.com/ai-society/hello-gradient-descent-

ef74434bdfa5

In the last section, we’re going to move to the direction that
minimizes our loss function. This tells us that we need to
determine how much are we going to move in that direction.
Now we introduce a learning rate. Learning rate is the
magnitude of how many units should we move from a current
point to the direction that makes the loss function minimum
faster.

From Figure 3.2, we may realize that this kind of Greedy
technique would give a different answer depending on the
starting value of the loss function. We can see that a different
starting value could move to a different minima point. One
goes to a local minima, the other goes to the global minima.
We wanted the loss function to be the smallest possible value,
that means we wanted the loss function to go to the global
minima all the time, but because of the Greedy technique
implementation, this is not possible. There’s no guarantee that
this implementation is always minimizing the loss function.
Next, we’ll cover the details of the Greedy technique used in
Gradient Descent to minimize the loss function.

 IV. GRADIENT DESCENT
In the previous section, we’ve covered on how the Greedy

technique is implemented in a Neural Network model. At every
point it stops, we calculate the direction that makes the Loss
function decreases the fastest without knowing is this going to
the local minima or the global minima. How’s exactly this
process was done?

Gradient Descent is used while training a machine learning
model. It is an optimization algorithm, based on a convex
function, that tweaks it’s parameters iteratively to minimize a
given function to its local minimum. It is simply used to find
the values of a functions parameters (coefficients) that
minimize a cost function as far as possible. You start by
defining the initial parameters values and from there on
Gradient Descent iteratively adjusts the values, using calculus,
so that they minimize the given cost-function. But to
understand it’s concept fully, you first need to know what a
gradient is [2].

According to Lex Fridman from MIT, gradient is a measure
of how much the output of a function changes if you change
the input a little bit. It simply measures the change in all
weights with regard to the change in error. You can also think
of a gradient as the slope of a function. The higher the gradient,
the steeper the slope and the faster a model can learn. But if the
slope is zero, the model stops learning. Said it more

δ4 = w41 * x1 + b41
a4 = σ (δ4)

c =
1
n ∑ (yi − ai)2

IF2211 Strategi Algoritma – Sem. II 2017/2018

https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5
https://medium.com/ai-society/hello-gradient-descent-ef74434bdfa5

mathematically, a gradient is a partial derivative with respect to
its inputs.

Figure 4.1 Gradient visualization.
Source : https://towardsdatascience.com/gradient-descent-in-a-

nutshell-eaf8c18212f0

From Figure 4.1, we can imagine a blind man who wants to
descend to a valley, with fewest steps possible. He just start
walking the valley by taking big steps to the steepest direction,
which he can do, as long as he’s not near the bottom. As he
come further to the bottom, he will do smaller and smaller
steps, since he doesn’t want to overshoot it. This process can
described mathematically by using gradient. Imagine the red
arrow is the step of the man with the goal to get to the
minimum point of the valley.

!
Figure 4.2 Gradient descent

Source : author

In Figure 4.2, b represents the next position of the man,
while a represent the man’s current position, and the minus
gamma times the gradient term is the direction of the steepest
descent. The formula above suggests what’s the new position
the man should go.

For example, Figure 3.2 represents a two dimensional
function we’re trying to minimize. First, we need to compute
the directional derivative of the function by calculating this
formula.

!

Figure 4.3 Directional derivative of a function.
Source : author

This formula is computing how much should it move to the
𝜃0 direction and 𝜃1 direction and results a vector in which
direction should it move to minimize the function. This
formula could change depending on how many random
variables the function we’re trying to minimize has. For the
Mean Squared Error function, we have two parameters to
tweak, just like the one in Figure 3.2. Now, we’ve got to know
what is gradient descent and how does it work. Next, we’ll
cover on how does this gradient descent is training the Neural
Network through a process called Backpropagation.

V. BACKPROPAGATION
Backpropagation, short for "backward propagation of

errors," is an algorithm for supervised learning of artificial
neural networks using gradient descent. Given an artificial
neural network and an error function, the method calculates the
gradient of the error function with respect to the neural
network's weights. It is a generalization of the delta rule for
perceptrons to multilayer feedforward neural networks [3].

The "backwards" part of the name stems from the fact that
calculation of the gradient proceeds backwards through the
network, with the gradient of the final layer of weights being
calculated first and the gradient of the first layer of weights
being calculated last. Partial computations of the gradient from
one layer are reused in the computation of the gradient for the
previous layer. This backwards flow of the error information
allows for efficient computation of the gradient at each layer
versus the naive approach of calculating the gradient of each
layer separately [3].

In this example case, we’re going to use the Neural Network
from Figure 2.1. This NN consists of three nodes input layer,
one hidden layer with four nodes, and two nodes output layer.
We define a superscript as the mark of which layer it belongs,
such as ai as the activation of the input layer ah as the
activation of the hidden layer ao as the activation of the output
layer. The same apply with the w for weights and 𝛿 for the
weighted sum.

!

Figure 5.1 Equations of each computation
Source : author

To do backpropagation, we have to adjust all the weights,
meaning we have to adjust the weights of the output layer and
the weights of the hidden layer by computing the partial
derivative of the mean squared error function over the output
layer weights and the hidden layer weights. We compute each
partial derivative by calculating the equations in Figure 5.2.

!

Figure 5.2 Equations of partial derivatives.
Source : author

Next we compute the delta of the weights we need to adjust
by subtracting the current weight with the product of the
learning rate and each of the partial derivative.

b = a − γ∇f (a)

∇J(θ0, θ1) =
∂J
∂θ0

i +
∂J
∂θ1

j

sh
k = wh

k1 * ai
1 + wh

k2 * a i
2

sh = whai

ah
k = σ (sh

k)

zh = σ (sh
k)

sl
k = wl

k1 * ah
1 + wh

k2 * a h
2 + wh

k3 * a h
3

sl = wlah

al
k = σ (sl

k)

ah = σ (sk)

∂E
∂wl

=
∂E
∂al

∂al

∂sl
∂sl

∂wl

∂E
∂wh

=
∂E
∂al

∂al

∂sl
∂sl

∂ah
∂ah

∂sh
∂sh

∂wh

IF2211 Strategi Algoritma – Sem. II 2017/2018

https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/artificial-neural-network/
https://brilliant.org/wiki/gradient-descent/
https://brilliant.org/wiki/artificial-neural-network/#training-the-model

!

Figure 5.3 Weights adjustment.
Source : author

VI. IMPLEMENTATION
After all we’ve discussed before, let’s try to implement this

method and try to build something intelligent. In this section,
we’re going to use Python and Jupyter Notebook. Let’s try and
build a Neural Network that accepts two integer inputs and
outputs those two integers in sorted descending order.

In this example, we’re going to implement the Neural
Network using matrix and vector. We define layers as a one
dimensional array or vector and the weights as two
dimensional array or matrix. Each of the elements corresponds
with one particular component in the Neural Network.

First of all, we need to import the libraries that we need. In
this example, we’re going to use NumPy for mathematical
library to do all the matrix operation and Python random
library to generate random data.

Figure 6.1 Import statements.
Source : author

Next, define all the functions that we need for the activation
functions. Here, we’re using ReLU activation functions that
will output max(x, 0) and it’s derivative.

Figure 6.2 Activation functions.
Source : author

After defining all the needed functions, we’re going to
generate the data. Since this is a supervised learning, we need
to generate the inputs and the correct output for each input.
We’re going to generate two random integer and make a tuple.
For each tuple in the list, we’re going to generate a tuple that’s
already in the sorted descending order. For this example we’re
generating 10000 sample data points.

Figure 6.3 Generate training data.
Source : author

We also need to define the hyperparameters such as epoch
(number of iterations), batch size (number of data that will be
computed at a particular time), learning rate, decay factor for
the learning rate to make the steps smaller each iteration so it
won’t overshoot, and number of neuron or nodes for each
layer.

Figure 6.4 Hyperparameters.
Source : author

Now we’re ready to initialize the network. We’re going to
initialize all the weights with a random uniform variable. This
is the factor that makes the Neural Network doesn’t always get
to the global minima. All depends on the starting point of the
error function.

Figure 6.5 Weights initialization.
Source : author

Time to train the network. We’re going to update all the
weights and use the entire dataset 500 times. For each epoch,
we’re going to consume the dataset per batch with 100 datum
each batch. This could make the learning more efficient since
the computation is smaller than if we use the entire dataset.

If we execute the program from the beginning to this point,
the network will start to learn from the given dataset. As we
can see on Figure 6.7, the network’s error is decreasing every
epoch, this means that the network is actually learning and
becoming more intelligent to solve this problem.

wh = wh − γ
∂E

∂wh

wl = wl − γ
∂E
∂wl

IF2211 Strategi Algoritma – Sem. II 2017/2018

Figure 6.6 Training the network.

Source : author

Figure 6.7 Training result.
Source : author

Now we’ve finished training the network and we should test
how does this network perform against input it hasn’t seen.
We’ve trained the network with dataset with range 0-50, now

we’re testing the network against a datum with range 0-500.

Figure 6.8 Testing the network.
Source : author

If we run this snippet of code in Figure 6.8 with Jupyter
Notebook, we’re getting a result like in Figure 6.9.

Figure 6.6 Testing results.
Source : author

IF2211 Strategi Algoritma – Sem. II 2017/2018

As we can see, the network performs well in even the data it
hasn’t seen. It gives the exact same output with the test label.
But this is only nine test, we need to validate the network using
even more range and even larger dataset.

Figure 6.10 Testing with even larger dataset.
Source : author

The code above tests the network with data of range
0-10.000 and results about 95% accuracy as shown below.

Figure 6.11 Testing result.
Source : author

V. CONCLUSION
From the example above, we can have several conclusions.

First, it is true that gradient descent doesn’t always give the
global minima since it was a greedy approach of the problem.
Second, we prove that Artificial Neural Network is really
working with gradient descent and it is using greedy approach
to learn. Third, we prove that even if the Neural Network is
using only 0-50 ranged dataset, the Neural Network still
performs well in a dataset of 0-10000 range with about 95%
accuracy.

VII. ACKNOWLEDGMENT
The Author thanked all the Discrete Mathematics (IF 2120)

lecturers, Faza Fahleraz who taught me this concept, creators
of Python and Python community, Jupyter Notebook, and
NumPy developers.

REFERENCES
1. A. Levitin, Introduction to the Design & Analysis of Algorithms, 3rd ed.

Boston, Massachusetts : Pearson Education, 2012.
2. https://towardsdatascience.com/gradient-descent-in-a-nutshell-

eaf8c18212f0, May 12, 2018
3. https://brilliant.org/wiki/backpropagation/, May 13, 2018

STATEMENT
This project was written by me and in my own words,

except for quotations from published and unpublished sources
which are clearly indicated and acknowledged as such. I am
conscious that the incorporation of material from other works
or a paraphrase of such material without acknowledgement
will be treated as plagiarism, subject to the custom and usage
of the subject.

Bandung, 13 May 2018

Abram Perdanaputra - 13516083

IF2211 Strategi Algoritma – Sem. II 2017/2018

https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0
https://brilliant.org/wiki/backpropagation/

