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Abstract—. Artificial General Intelligence or more commonly 
Artificial Intelligence (AI) is gaining its fame because how big is 
its potential to solve the currently unsolved problems. AI can be 
extended into many kind of field such as medical, transportation, 
education, civil, and many other. AI is using Machine Learning 
(ML) algorithms to learn and predict solution. The goal of 
common ML models is how to minimize the error prediction. 
Without us knowing, one of the AI model which is Neural 
Network is using Greedy technique to minimize its loss function. 
Every training sessions, the Neural Network wil forward pass and 
do backpropagation using Gradient Descent —which is a Greedy 
technique — to adjust the weights to minimize the loss function.  

Keywords—Greedy, Neural Network, Gradient Descent, 
Artificial Intelligence.  

I. INTRODUCTION 
These days, Artificial Intelligence (AI) is gaining popularity. 

Many companies boasts that their product is AI-powered so 
that it could be superpower to common people. Products such 
as self driving cars, personal assistant, videos / article 
recommenders, image recognition, pattern generator, and many 
other kind of products that is using AI to work better and help 
humans better.  

The society is having many different perceptions of AI. 
Some people doesn’t even know how AI works, others are very 
excited on how it is helping human lives, others work to use AI 
to save many human lives, but under the hood, all of AI is pure 
and simple calculus math. One common and very basic AI 
model is the Artificial Neural Network. It’s the base model that 
inspires other models such as Convolutional Neural Network, 
Recurrent Neural Network, Associative Neural Network, and 
many other types of Neural Network (NN). How’s Neural 
Network able to solve problems? 

II. THEORY 
When trying to solve problem, humans tend to see the best 

solution available to pick, but in sequential problem, this kind 
of selection method doesn’t always give the optimum solution 
we’re looking for. That’s how Greedy technique sees things 
when trying to solve a certain problem. Greedy approach 
suggests constructing solution through a sequence of steps, 
each each expanding a partially constructed solution obtained 
so far, until the complete solution to the problem is reached [1].  
On each step, the solution must be feasible — satisfying the 
problem constraints—, locally optimal — best local choice that 
can be taken—, and irrevocable — once its taken, there’s no 
turning back. These requirements explains Greedy’s name. On 
each step, we have to be “greedy” to grab the best alternative 

possible solution available hoping that the sequence of locally 
optimal solution gives us the global solution to the entire 
problem. 

By this time, there are many Greedy technique algorithms 
that able to find the optimal solutions at all times such as Prim 
and Kruskal’s algorithm to find the minimum spanning tree 
given a graph, Dijkstra’s algorithm to find the shortest path to 
all other vertices given a graph and it’s source vertex, and 
Huffman Trees and Codes to compress a sequence of strings. 
But there are many problems that Greedy technique couldn’t 
solve such as Coin Partition Problem, Traveling Salesperson 
Problem (TSP), Integer Knapsack Problem, and many other. In 
this Neural Network problem, Greedy technique cannot be 
guaranteed to give the optimal solution at all times. 

Before diving further, we have to describe what NN is and 
define the problem we’re trying to solve. Neural Network is a 
sequence of layers that consists of nodes, weights to connect 
one node to another, and optionally bias for each node. Here, 
we define a node is as simple as something that holds a 
number. The structure of a simple NN is given in Figure 1.1. 

 

Figure 2.1 Neural Network structure. 
Source : https://medium.com/@curiousily/tensorflow-for-hackers-

part-iv-neural-network-from-scratch-1a4f504dfa8 

Figure 1.1 shows that a NN consists of one input layer, one 
output layer, and hidden layer with any arbitrary number of 
layers inside it. It also shows that every node have some kind 
of connection to every node in the next layer called weights. It 
represents how strong is a node effecting a node in the next 
layer. For example, w41 represents how’s the node 1 effects the 
node 4. The weight could be negative—the node 4 doesn’t like 
if the node 1 is high—, positive— the node 4 is higher if the 
node 1 is high—, or zero—node 1 doesn’t affect node 4 at all. 

A NN receives input and will place the inputs to the input 
layer to become the nodes value. Here we call the node’s value 
as activation. To calculate the activation of a node, simply just 
calculate the “weighted sum” of its input, add the bias, and 
decide whether to activate of not activate the node.  
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(a) !  
(b) !  

Figure 2.2 (a) Weighted sum of a node (b) Activation of a node 

In NN, we decide to activate or not activate a node by 
applying a function called activation function. Activation 
function could be any function you would like, but the most 
common ones are Sigmoid function, ReLU function, Softmax 
function, and Step function. That’s all the basics needed for 
knowing how is Neural Network using a Greedy technique to 
solve problems. 

 III. GREEDY IMPLEMENTATION ON NEURAL NETWORK 
Every Machine Learning model needs a set of data to learn 

from. In Machine Learning, there’s two kind of learning 
process, Supervised Learning and Unsupervised Learning. The 
difference between those two are Supervised Learning tells the 
model what’s the correct result from a given input. 
Unsupervised Learning doesn’t tell what’s the expected output. 
The problem domain of Supervised and Unsupervised learning 
is given to the reader for research. In this problem, we’re using 
Supervised Learning to train the Neural Network model to 
tackle a given problem.  

One other essential component of a Neural Network model 
is the loss function. A loss function is how we measure the 
performance of how’s the model is doing, is it nearly correct or 
is it giving us utter mess. We can define many kind of loss 
functions, but the most common ones are Cross Entropy, Mean 
Squared Error, Hinge Loss, and Huber Loss. For simplicity 
sake, we’re using Mean Squared Error loss function for easy 
use. 

!  

Figure 3.1 Mean Squared Error loss function. 
Source : author 

To compute the error, simply find the difference between 
every expected output and the output layer activation and 
square those values. Keep doing it for all the nodes in output 
layer and sum all the squared difference. Divide the sum by the 
number of nodes in the layer. This gives the mean squared 
error of the output layer given an expected output. 

We already reviewed how the NN performance is evaluated. 
Now we can continue how Greedy technique is used on Neural 
Networks. First, we do forward pass to find the output layers 
activation. The activation of the output layer is the NN’s 
prediction. When we have the NN’s prediction for a given 
input, we measure the loss/error of the NN by using the loss 
function. The training sequence of a NN is evaluate the 
activation, count the loss function, and adjust the weights to 
minimize the loss function.  

Here goes the Greedy technique. The problem is we need to 
find a global minimum of the loss function. To adjust the 
weights, we compute the the gradient of the loss function. We 
know from Figure 3.1 that our Mean Squared Error loss 
function has two random variables, so we need to find how’s 
each parameter affect the loss function. For example, we 
compute the gradient of loss function over wi to find in what wi 
direction we have to go to minimize the loss function faster. 
We’ll cover the details in the upcoming section below. 

Figure 3.2 Gradient descent example. 
Source : https://medium.com/ai-society/hello-gradient-descent-

ef74434bdfa5 

In the last section, we’re going to move to the direction that 
minimizes our loss function. This tells us that we need to 
determine how much are we going to move in that direction. 
Now we introduce a learning rate. Learning rate is the 
magnitude of how many units should we move from a current 
point to the direction that makes the loss function minimum 
faster. 

From Figure 3.2, we may realize that this kind of Greedy 
technique would give a different answer depending on the 
starting value of the loss function. We can see that a different 
starting value could move to a different minima point. One 
goes to a local minima, the other goes to the global minima. 
We wanted the loss function to be the smallest possible value, 
that means we wanted the loss function to go to the global 
minima all the time, but because of the Greedy technique 
implementation, this is not possible. There’s no guarantee that 
this implementation is always minimizing the loss function. 
Next, we’ll cover the details of the Greedy technique used in 
Gradient Descent to minimize the loss function. 

   IV. GRADIENT DESCENT 
In the previous section, we’ve covered on how the Greedy 

technique is implemented in a Neural Network model. At every 
point it stops, we calculate the direction that makes the Loss 
function decreases the fastest without knowing is this going to 
the local minima or the global minima. How’s exactly this 
process was done? 

Gradient Descent is used while training a machine learning 
model. It is an optimization algorithm, based on a convex 
function, that tweaks it’s parameters iteratively to minimize a 
given function to its local minimum. It is simply used to find 
the values of a functions parameters (coefficients) that 
minimize a cost function as far as possible. You start by 
defining the initial parameters values and from there on 
Gradient Descent iteratively adjusts the values, using calculus, 
so that they minimize the given cost-function. But to 
understand it’s concept fully, you first need to know what a 
gradient is [2]. 

According to Lex Fridman from MIT, gradient is a measure 
of how much the output of a function changes if you change 
the input a little bit. It simply measures the change in all 
weights with regard to the change in error. You can also think 
of a gradient as the slope of a function. The higher the gradient, 
the steeper the slope and the faster a model can learn. But if the 
slope is zero, the model stops learning. Said it more 

δ4 = w41 * x1 + b41
a4 = σ (δ4)

c =
1
n ∑ (yi − ai)2
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mathematically, a gradient is a partial derivative with respect to 
its inputs. 

Figure 4.1 Gradient visualization. 
Source : https://towardsdatascience.com/gradient-descent-in-a-

nutshell-eaf8c18212f0 

From Figure 4.1, we can imagine a blind man who wants to 
descend to a valley, with fewest steps possible. He just start 
walking the valley by taking big steps to the steepest direction, 
which he can do, as long as he’s not near the bottom. As he 
come further to the bottom, he will do smaller and smaller 
steps, since he doesn’t want to overshoot it. This process can 
described mathematically by using gradient. Imagine the red 
arrow is the step of the man with the goal to get to the 
minimum point of the valley.  

!  
Figure 4.2 Gradient descent 

Source : author 

In Figure 4.2, b represents the next position of the man, 
while a represent the man’s current position, and the minus 
gamma times the gradient term is the direction of the steepest 
descent. The formula above suggests what’s the new position 
the man should go. 

For example, Figure 3.2 represents a two dimensional 
function we’re trying to minimize. First, we need to compute 
the directional derivative of the function by calculating this 
formula. 

!  

Figure 4.3 Directional derivative of a function. 
Source : author 

This formula is computing how much should it move to the 
𝜃0 direction and 𝜃1 direction and results a vector in which 
direction should it move to minimize the function. This 
formula could change depending on how many random 
variables the function we’re trying to minimize has. For the 
Mean Squared Error function, we have two parameters to 
tweak, just like the one in Figure 3.2. Now, we’ve got to know 
what is gradient descent and how does it work. Next, we’ll 
cover on how does this gradient descent is training the Neural 
Network through a process called Backpropagation. 

V. BACKPROPAGATION 
Backpropagation, short for "backward propagation of 

errors," is an algorithm for supervised learning of artificial 
neural networks using gradient descent. Given an artificial 
neural network and an error function, the method calculates the 
gradient of the error function with respect to the neural 
network's weights. It is a generalization of the delta rule for 
perceptrons to multilayer feedforward neural networks [3]. 

The "backwards" part of the name stems from the fact that 
calculation of the gradient proceeds backwards through the 
network, with the gradient of the final layer of weights being 
calculated first and the gradient of the first layer of weights 
being calculated last. Partial computations of the gradient from 
one layer are reused in the computation of the gradient for the 
previous layer. This backwards flow of the error information 
allows for efficient computation of the gradient at each layer 
versus the naive approach of calculating the gradient of each 
layer separately [3]. 

In this example case, we’re going to use the Neural Network 
from Figure 2.1. This NN consists of three nodes input layer, 
one hidden layer with four nodes, and two nodes output layer. 
We define a superscript as the mark of which layer it belongs, 
such as ai as the activation of the input layer ah as the 
activation of the hidden layer ao as the activation of the output 
layer. The same apply with the w for weights and 𝛿 for the 
weighted sum. 

!  

Figure 5.1 Equations of each computation 
Source : author 

To do backpropagation, we have to adjust all the weights, 
meaning we have to adjust the weights of the output layer and 
the weights of the hidden layer by computing the partial 
derivative of the mean squared error function over the output 
layer weights and the hidden layer weights. We compute each 
partial derivative by calculating the equations in Figure 5.2. 

!  

Figure 5.2 Equations of partial derivatives. 
Source : author 

Next we compute the delta of the weights we need to adjust 
by subtracting the current weight with the product of the 
learning rate and each of the partial derivative. 

b = a − γ∇f (a)
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∂J
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j
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!  

Figure 5.3 Weights adjustment. 
Source : author 

VI. IMPLEMENTATION 
After all we’ve discussed before, let’s try to implement this 

method and try to build something intelligent. In this section, 
we’re going to use Python and Jupyter Notebook. Let’s try and 
build a Neural Network that accepts two integer inputs and 
outputs those two integers in sorted descending order.  

In this example, we’re going to implement the Neural 
Network using matrix and vector. We define layers as a one 
dimensional array or vector and the weights as two 
dimensional array or matrix. Each of the elements corresponds 
with one particular component in the Neural Network. 

First of all, we need to import the libraries that we need. In 
this example, we’re going to use NumPy for mathematical 
library to do all the matrix operation and Python random 
library to generate random data.  

Figure 6.1 Import statements. 
Source : author 

Next, define all the functions that we need for the activation 
functions. Here, we’re using ReLU activation functions that 
will output max(x, 0) and it’s derivative. 

Figure 6.2 Activation functions. 
Source : author 

After defining all the needed functions, we’re going to 
generate the data. Since this is a supervised learning, we need 
to generate the inputs and the correct output for each input. 
We’re going to generate two random integer and make a tuple. 
For each tuple in the list, we’re going to generate a tuple that’s 
already in the sorted descending order. For this example we’re 
generating 10000 sample data points. 

Figure 6.3 Generate training data. 
Source : author 

We also need to define the hyperparameters such as epoch 
(number of iterations), batch size (number of data that will be 
computed at a particular time), learning rate, decay factor for 
the learning rate to make the steps smaller each iteration so it 
won’t overshoot, and number of neuron or nodes for each 
layer. 

Figure 6.4 Hyperparameters. 
Source : author 

Now we’re ready to initialize the network. We’re going to 
initialize all the weights with a random uniform variable. This 
is the factor that makes the Neural Network doesn’t always get 
to the global minima. All depends on the starting point of the 
error function. 

Figure 6.5 Weights initialization. 
Source : author 

Time to train the network. We’re going to update all the 
weights and use the entire dataset 500 times. For each epoch, 
we’re going to consume the dataset per batch with 100 datum 
each batch. This could make the learning more efficient since 
the computation is smaller than if we use the entire dataset. 

If we execute the program from the beginning to this point, 
the network will start to learn from the given dataset. As we 
can see on Figure 6.7, the network’s error is decreasing every 
epoch, this means that the network is actually learning and 
becoming more intelligent to solve this problem. 

wh = wh − γ
∂E

∂wh

wl = wl − γ
∂E
∂wl
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Figure 6.6 Training the network. 

Source : author 

Figure 6.7 Training result. 
Source : author 

Now we’ve finished training the network and we should test 
how does this network perform against input it hasn’t seen. 
We’ve trained the network with dataset with range 0-50, now 

we’re testing the network against a datum with range 0-500. 

Figure 6.8 Testing the network. 
Source : author 

If we run this snippet of code in Figure 6.8 with Jupyter 
Notebook, we’re getting a result like in Figure 6.9. 

Figure 6.6 Testing results. 
Source : author 

IF2211 Strategi Algoritma – Sem. II 2017/2018 



As we can see, the network performs well in even the data it 
hasn’t seen. It gives the exact same output with the test label. 
But this is only nine test, we need to validate the network using 
even more range and even larger dataset. 

Figure 6.10 Testing with even larger dataset. 
Source : author 

The code above tests the network with data of range 
0-10.000 and results about 95% accuracy as shown below. 

Figure 6.11 Testing result. 
Source : author 

V.   CONCLUSION 
From the example above, we can have several conclusions. 

First, it is true that gradient descent doesn’t always give the 
global minima since it was a greedy approach of the problem. 
Second, we prove that Artificial Neural Network is really 
working with gradient descent and it is using greedy approach 
to learn. Third, we prove that even if the Neural Network is 
using only 0-50 ranged dataset, the Neural Network still 
performs well in a dataset of 0-10000 range with about 95% 
accuracy. 
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