
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

Implementation and Analysis of KMP, Boyer-Moore,

and Regex For Searching IF2211 Algorithm

Strategies Papers

Kevin Fernaldy 13516109

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13516109@std.stei.itb.ac.id

Abstract—String matching is a common algorithm that used for

searching and indexing a sub-text in one or more texts. From web

page indexing like Google Search Engine to a simple find and

replace tool in Notepad, string matching is a very important

algorithm for almost every application. In courses’ website, often

there are thousands of papers which is openly-shared. How does

string matching algorithm helps in minimizing the time to search the

papers we wanted?

Keywords—string matching, Knuth-Morris-Pratt, Boyer-Moore,

Regular Expression

I. INTRODUCTION

We surely have been given assignments to write a paper as a
college student at least once. The paper is often about our
understanding of the lectures we had. The lecturer may give the
students the subject(s) for the paper, or give the students a
freedom to pick the subject from the given lectures. The students
then submit the paper to the lecturer for one of the scoring
criteria of the course he currently takes.

Sometimes, the lecturer gives an extra rule of avoiding the
same title as the previous submitted papers. This can easily be
done if the old submitted papers are listed in the course website
and the list are small. However, a big problem can occur if the
course has been running since a long time, and there are
thousands of papers listed in a different web pages. It will cost a
long time to search the entire list whether our paper title has
already been submitted or not.

Also, when we want to read or cite from the previous
submitted papers, we surely don’t want to search the entire list
of papers just to find the paper we wanted. We can waste more
time just to search the paper than working on our own paper.
This is where string matching algorithm comes very handy in
aiding our problem. There are many string matching algorithm
that has been made by computer engineers, and every new
algorithm, the complexity are getting much better than before.

This paper will explore three string matching algorithm that
are commonly used in programming : Knuth-Morris-Pratt,
Boyer-Moore, and Regular Expression, implements them in

searching IF2211 Algorithm Strategy papers, and analyze the
time execution for every string matching algorithm stated above.

II. A SHORT EXPLANATION OF STRING MACTHING ALGORITHM

String matching algorithm is an algorithm to determine
whether a pattern is contained within a current text. From this
definition, this algorithm can be expanded into multiple uses—
e.g., counting how many occurrences of a pattern in a text, and
getting the index of a pattern’s first occurrence in a text. As
stated in Introduction, there are 3 commonly used string
matching algorithm used in programming, each will be
explained below.

A. Knuth-Morris-Pratt (KMP)

KMP algorithm was conceived and published by Donald E.
Knuth, James H. Morris, and Vaughan R. Pratt in 1977. This
algorithm’s running time is proportional to the sum of the length
of the pattern, making it low enough to make this algorithm
practical to use[1]. Although KMP algorithm is a very old
algorithm, it is still commonly used in string matching algorithm
for its easy to implement and low running time.

The way how KMP algorithm works is to find how many
shifts of pattern we can do to minimize the comparison. This can
be done by using a KMP Border Function. KMP Border
Function pre-process the pattern to find matches of prefixes of
the pattern with the pattern itself[2]. This is useful because we
can shift our pattern farther, while also minimizing the
comparison by ignoring the characters that are definitely same
as the text character. For example we have a pattern P of
ABAAAB with the border function below.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

j 0 1 2 3 4 5

P[j] A B A A A B

k - 0 1 2 3 4

b(k) - 0 0 1 1 1

 j = position of patterns

 P[j] = the character of pattern in position j

 k = position before pattern mismatch

 b(k) = the size of the largest equal substring

Table 2.1 KMP Border Function

We take b(3) as an example. We take a substring i as a prefix
of the pattern before P[3], which is ABAA. Then we take a
substring j as a suffix of pattern between P[1..3], which is BAA.
From that substrings, we find the size of largest prefix of i that
is also a suffix of j, in this example A is the prefix of i and the
suffix of j. Now we can calculate the length of string “A”, which
is 1 and make it as a result of b(3). This calculations are repeated
until all of the KMP Border Function are filled.

B. Boyer-Moore

Boyer-Moore algorithm was developed by Robert S. Boyer,
and J Strother Moore in 1977[3]. Boyer-Moore algorithm,
rather than matching the characters of the pattern from the front,
it matches the characters backwards starting at its end. Booyer-
Moore algorithm can also jump backwards and forwards
depending on the pre-process algorithm used, unlike the KMP
algorithm. There are 3 jumps that Booyer-Moore can do, based
on its mismatch cases[4], which is

1. if pattern contains x to the left of mismatched character,
then shift the pattern to the right to align the last occurrence
of x in the pattern with the text

T A B x B → A B x B

P A x B → A x B

2. if pattern contains x, but a shift right is not possible, then
shift the pattern to the right by one character

T A x A B → A x A B

P A B x → A B x

3. if case one and two don’t apply, then shift the pattern to
align the first character of the pattern to the location of the
mismatch in the text

T A x A B → A x A B

P A A A → A A A

 Unlike KMP, Booyer-Moore excels in long pattern. This is
because the longer the character, more jumps can be made,
making the string matching faster.

C. Regular Expression (Regex)

Regex is a series of characters that defines a pattern. Regex
was described by mathematician Stephen Cole Kleene in
1951[5]. Rather than using a standard, alphabetic and numeric
characters for a pattern, Regex uses special characters that
generates a pattern based on our preferences using a finite state
machine. Based on the Regex input, we can create multiple
patterns at once without re-inputing the different pattern
manually.

A finite state machine is a machine that accepts a string as
and input and outputs an answer whether the string is accepted
or rejected. How a string is accepted or rejected is again, based
on the Regex pattern we define as a string generator. For an
example we will make a Regex pattern of (a*b*cc)

 P = (a*b*cc)

This will create a possible pattern of cc, acc, bcc, abcc,
aabcc, aabbcc, aaabcc, and so on. The letter a and b can be made
indefinitely, while cc are static. From the pattern P, we can get
an example pattern of “abcc”. This patter now will be created as
a finite state machine to determine whether a text contains
“abcc” as a sub-text. The finite state machine can be seen below

Picture 2.1 Finite State Machine of Pattern “abcc”

For example, we have a text “aaabaccabccaabaacc”. This
text is accepted in this finite state machine, because sub-text
“abcc” are located in index 7 (text index starts at 0). Therefore
we can conclude that pattern the text does contains sub-text
“abcc”

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

III. IMPLEMENTATION OF STRING MATCHING ALGORITHM

To demonstrate the string matching algorithm in Algorithm
Strategy papers finder, I have made a simple program complete
with runtime execution for further analysis. The data for the
program are scraped from Dr. Rinaldi Munir’s website,
http://informatika.stei.itb.ac.id/~rinaldi.munir/.

Picture 3.1 The Interface of Sample Program

The program takes a text from the keyboard as the pattern
for the string matching algorithm. The user then select which
algorithm to be used and decides whether the matching are case
sensitive, and in the case of Regex, matches the whole word. The
results then printed below, with the title of the papers are
grouped by semester and year. The grouping will make it easier
to find the paper in Dr. Rinaldi Munir’s website.

To test the runtime of all the algorithm, there are two text
that will be tested with the string matching algorithm : “greedy”
with 6 characters long; and “implementation” with 14 characters
long. Ten tests will be taken to minimize the error rate. KMP
algorithm will be the first to be demonstrated, followed with
Boyer-Moore and Regex.

1. KMP

a) Text = “greedy”

Tests Results (seconds)

1 0.04796862602233887

2 0.047856807708740234

3 0.05599665641784668

4 0.051872968673706055

5 0.05208086967468262

6 0.05034351348876953

7 0.05175137519836426

8 0.04833483695983887

9 0.04435372352600098

10 0.04629707336425781

Table 3.1 KMP “greedy” Text Result Table

b) Text = “implementation”

Tests Results (seconds)

1 0.05278611183166504

2 0.053936004638671875

3 0.054134368896484375

4 0.05591249465942383

5 0.05426597595214844

6 0.056267499923706055

7 0.04584527015686035

8 0.052819013595581055

9 0.05540657043457031

10 0.053624868392944336

Table 3.2 KMP “implementation” Text Result Table

2. Boyer-Moore

a) Text = “greedy”

Tests Results (seconds)

1 0.08899712562561035

2 0.08296036720275879

3 0.08891606330871582

4 0.08765721321105957

5 0.08796572685241699

6 0.08844161033630371

7 0.08422493934631348

8 0.09043073654174805

9 0.08984875679016113

10 0.08875346183776855

Table 3.3 Boyer-Moore “greedy” Text Result Table

b) Text = “implementation”

Tests Results (seconds)

1 0.07014894485473633

2 0.07564210891723633

3 0.0727989673614502

4 0.07069587707519531

5 0.07214832305908203

6 0.0709528923034668

7 0.06855225563049316

8 0.06955265998840332

9 0.07296919822692871

http://informatika.stei.itb.ac.id/~rinaldi.munir/

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

10 0.06373095512390137

Table 3.4 Boyer-Moore “implementation” Text
Result Table

3. Regex

a) Text = “greedy”

Tests Results (seconds)

1 0.007326602935791016

2 0.006690025329589844

3 0.006884098052978516

4 0.0071675777435302734

5 0.006811857223510742

6 0.007042407989501953

7 0.0067479610443115234

8 0.00653839111328125

9 0.0071985721588134766

10 0.0068035125732421875

Table 3.5 Regex “greedy” Text Result Table

b) Text = “implementation”

Tests Results (seconds)

1 0.009277582168579102

2 0.0063571929931640625

3 0.005544900894165039

4 0.005502939224243164

5 0.005994081497192383

6 0.006643772125244141

7 0.00889134407043457

8 0.0057315826416015625

9 0.00660395622253418

10 0.007650136947631836

Table 3.6 KMP “implementation” Text Result Table

IV. ANALYSIS

After the highest and the lowest result from each individual
tests are removed, the average of all the results are calculated
and yields the following results,

1. KMP

a) Text = “greedy”

average = 0.04956325888633728

b) Text = “implementation”

average = 0.05411067605018616

2. Boyer-Moore

a) Text = “greedy”

average = 0.0881006121635437

b) Text = “implementation”

average = 0.07097738981246948

3. Regex

a) Text = “greedy”

average = 0.0069182515144348145

b) Text = “implementation”

average = 0.006677120923995972

Picture 3.2 Graph of The Average of Test Results

Based on the calculations, KMP algorithm results are the
most average, with both results are close to 50 milliseconds of
runtime. However, KMP algorithm runtime are parallel to the
pattern length, meaning the longer the pattern length, the longer
the time needed to process the text. This makes KMP algorithm
excels in short length of pattern, shown in the average result.
KMP algorithm also excels in continuous data processing , since
KMP algorithm does not need to move backwards to check the
text.

Boyer-Moore algorithm on the other hand, has the slowest
results. The “greedy” text’s runtime is almost 90 milliseconds
long. The “implementation” text’s runtime however, is only
around 70 milliseconds long. That’s because Boyer-Moore
algorithm runtime is divergent from the pattern characters
length, meaning the longer the pattern’s length, the shorter the
runtime. This makes Boyer-Moore algorithm excels searching a
long series of characters, rather than searching short characters
or binary[6]

Regex has the best runtime results in both of the text, with
both text have an impressive result close to 7 milliseconds. This
is because the text are tested instead of the pattern. The pattern
makes an automaton that checks the text character by character
until it stops in a state. This makes the string matching runs very
fast, because we only need to compile a Regex pattern and use

0

0,05

0,1

"Greedy" "Implementation"

Average Test Results

KMP Boyer-Moore Regex

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2017/2018

it to check the text, rather than passing the text into an algorithm.
This makes Regex a common tool for finding and replacing texts
in text editors, since the runtime of the search is very fast.

V. CONCLUSION

In conclusion, string matching algorithm benefits greatly for
students who wants to search the old submitted papers for citing
and reading, also to check whether their current paper title is
already submitted before or not.

Also, from the 3 string matching algorithm that has been
analyzed, KMP algorithm is best for short pattern length and
continuous text, Boyer-Moore algorithm is best for long pattern
length, and Regex is best for multiple applications that in most
of some defeats KMP algorithm and Boyer-Moore algorithm.

ACKNOWLEDGMENT (Heading 5)

I would like to thank you for, my family and for giving me
emotional and financial support in making this paper, my close
friends who also giving me lots emotional support, and Gojek
drivers for delivering me food take-outs in the busy-times of
making this paper

REFERENCES

[1] G. Eason, B. Noble, and I.N. Sneddon, “SIAM Journal on Computing,”
vol. 6, No.2, Society for Industrial and Applied Mathematics, pp. 323-
350, 1977.

[2] Andrew Davison, “Pattern Matching”, Presentation, WiG Lab (teachers
room), COE, updated by Dr. Rinaldi Munir, Informatika – STEI, Institut
Teknologi Bandung.

[http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-
2018/Pencocokan-String-(2018).pdf, accessed on 12 May 2018]

[3] “Communications of the ACM”, Magazine, vol. 20, Issue 10, New York:
ACM, pp. 762-772, October 1977.

[4] Andrew Davison, op cit., pp. 42-45

[5] S. C. Kleene, “Representation of Events in Nerve Nets and Finite
Automata”, RM-704, California: U.S. Air Force Project RAND, 15
December 1951.

[6] Andrew Davison, op cit., pp. 55

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 14 Mei 2018

Kevin Fernaldy

13516109

http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Pencocokan-String-(2018).pdf
http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2017-2018/Pencocokan-String-(2018).pdf

