
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Determining Optimum Path in Synthesis of Organic

Compounds using Branch and Bound Algorithm

Diastuti Utami 13514071

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13514071@std.stei.itb.ac.id

Abstract— Synthesis of an organic compound from a
certain compound offers a wide variety of possibility. Getting
the optimum yield in a synthesis reaction has been a concern
for many years in the field of organic chemistry. Sometimes,
the reaction can be more complicated that it requires some
time to determine the most efficient path. Nowadays, there is
a number of software that could assist in determining the
optimum path, such as software offering a database of
reactions that could be used in path determining. In this
paper, we will discuss how branch and bound algorithm
could find optimum path in synthesis of organic compound(s).

Keywords—branch and bound; computational

chemistry;branch and bound algorithm;

I. INTRODUCTION

Organic chemistry is a field of chemistry that studies
compounds and substances made of a chain of carbon atoms.
Reactions in organic chemistry often considered ―unique‖
because it have distinct mechanism and almost always not
yielding 100% products.

The thing with organic reactions is that it takes a lot of time.
Therefore, catalysts are often involved in many reactions, but
as we knew, the cost of catalyst often not cheap. Another thing
is, the reaction is not always effective. Suppose we want to
synthesize compound A from compound B, it will only yield
45% compound A, meaning that if we predict we can get, say,
one mole of A, in reality we only get 0.45 moles of A.

Figure 1 Synthesis of benzocaine from toluene

Organic compounds are often used in industrial scales, yet
the process to synthesize an organic compound often involves
many steps and takes a lot of time. On the other hand, there are
many ways possible to synthesize an organic compound. This
results in a challenge of getting the most efficient way to
synthesize an organic compound.

Another challenge is to open all the possibilities of
reactions. This is essential to determine the optimum path, a
synthesis reaction often has many possibilities, but to create a
comprehensive database of organic reactions is another
challenge. Furthermore, we have to match the compound we
want to search with the database—that’s another thing.

The breakthrough in computational chemistry allows an
insight to solve the challenge. Nowadays, many software offer
assistant on searching the possible reactions, as database of
organic reactions have been developed everywhere. Out of
many possibilities to determine the most efficient way to
synthesize an organic compound, we will see how the branch
and bound algorithm solves the problem.

II. THEORY OF BRANCH AND BOUND ALGORITHM

Branch and bound is a state space search method in which
all the children of a node are generated before expanding any
of its children. It is similar to backtracking technique but uses
BFS-like search. In branch and bound, we will use the term
live-node to describe a node that has not been expanded, dead
node which is a node that has been expanded, and solution
node.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Figure 2 FIFO and LIFO Branch & Bound

The searching used in branch and bound is called least-cost
search (LC). Least-cost search have some attributes:

 The selection rule for the next E-node in FIFO or
LIFO branch-and-bound is sometimes ―blind‖. i.e.
the selection rule does not give any preference to a
node that has a very good chance of getting the
search to an answer node quickly.

 The search for an answer node can often be
speeded by using an ―intelligent‖ ranking function,
also called an approximate cost function C

 Expanded-node (E-node): is the live node with
best C value

 Requirements:

o Branching: A set of solutions, which is
represented by a node, can be partitioned
into mutually exclusive sets. Each subset
in the partition is represented by a child
of the original node.

o Lower bounding: An algorithm is
available for calculating a lower bound
on the cost of any solution in a given
subset.

Example is 8-puzzle, where:

 Cost function: C = g(x) +h(x), where h(x) = the
number of misplaced tiles and g(x) = the number
of moves so far

 Assumption: move one tile in any direction cost 1

Figure 3 8-puzzle branch and bound

Global branch and bound algorithm:

1. Insert root node to queue Q. If root node is a
solution node, then stop.

2. If Q empty and no solution found, then stop.

3. If Q not empty, select from Q a node i that have
minimum cost C(i). if there is more than 1 node
that satisfies the condition, choose one randomly.

4. If node i is a solution node, then stop. Else,
generate all the child nodes. If there is no child
found, return to step 2.

5. For each child j from node i, count C(j), and insert
the children to Q.

6. Return to step 2.

The algorithm in this paper is similar to the knapsack
problem. Knapsack problem is a problem where:

• Input

– Capacity K

– n items with weights wi and values vi

• Goal

– Output a set of items S such that

• the sum of weights of items in S is
at most K

• and the sum of values of items in S
is maximized

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Figure 4 Tree for a knapsack problem

Properties of a knapsack tree as follows:

 Left child is always xi = 1 and right child is
always xi = 0

 Bounding function to prune tree:

o At a live node in the tree, if we can
estimate the upper bound (best case)
profit at that node, and if that upper
bound is less than the profit of an actual
solution found already, then we don’t
need to explore that node.

o We can use the greedy knapsack as our
bound function as it gives an upper
bound, since the last item in the knapsack
is usually fractional

o Greedy algorithms are often good ways
to compute upper (optimistic) bounds on
problems, e.g., for job scheduling with
varying job times, we can cut each job
into equal length parts and use the greedy
job scheduler to get an upper bound

o Linear programs that treat the 0-1
variables as continuous between 0 and 1
are often another good choice

Suppose we have a knapsack problem like in the table
above, where maximum weight is 110. This generate a solution
tree:

Figure 5 Generated tree from the knapsack problem

Where:

 Numbers inside a node are profit and weight at that
node, based on decisions from root to that node

 Nodes without numbers inside have same values as
their parent

 Numbers outside the node are upper bound calculated
by greedy algorithm

o Upper bound for every feasible left child (xi
=1) is same as its parent’s bound

o Chain of left children in tree is same as
greedy solution at that point in the tree

o We only recompute the upper bound when
we can’t move to a feasible left child

 Final profit and final weight (lower bound) are
updated at each leaf node reached by algorithm

o Solution improves at each leaf node reached

o No further leaf nodes reached after D
because lower bound (optimal value) is
sufficient to prune all other tree branches
before leaf is reached

 By using floor of upper bound at nodes E and F, we
avoid generating the tree below either node

o Since optimal solution must be integer, we
can truncate upper bounds

o By truncating bounds at E and F to 159, we
avoid exploring E and F

Branch and bound algorithm can also use depth first search.
Depth first search is used in combination with breadth first
search in many problems. Common strategy is to use depth
first search on nodes that have not been pruned. This gets to a
leaf node, and a feasible solution, which is a lower bound that
can be used to prune the tree in conjunction with the greedy
upper bounds. If greedy upper bound is less than lower bound,
prune the tree. Once a node has been pruned, breadth first
search is used to move to a different part of the tree. Depth first
search bounds tend to be very quick to compute if we move
down the tree sequentially, e.g. the greedy bound doesn’t need
to be recomputed. Linear program as bounds are often quick
too: few simplex pivots.

III. BRANCH AND BOUND IN SYNTHESIS REACTIONS

First off, we should determine how we will count the bound.
The factors related to the bound include yield, time, and cost.
Because here we can’t predict the cost, the bound will be
determined using yield and time only.

Let’s take a look at this simple reaction diagram. We can
make a table out of it, consisting reagents, products, yield, time,
and yield/time ratio. In this table ―C‖ stands for compound, so
C1 means compound number 1, and so on. We will assume that
the alkyl R is CH3.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

In real life, the diagram was generated through a searching
in the database. A user will input a final product and some
possible reagent that he/she has, and then from the database,
we will get a few possibilities available from reagents to
produce a certain product. The reaction path is represented with
a directed graph.

Reagent Product Yield Time(m) Yield/Time

C2 C1 90% 60 1.500

C2 C3 82% 35 2.343

C2 C4 78% 75 1.040

C2 C5 75% 120 0.625

C2 C7 85% 80 1.063

C3 C6 62% 95 0.653

C3 C7 46% 120 0.383

C5 C2 70% 120 0.583

C7 C6 73% 34 3.042

C7 C8 80% 40 2

C7 C9 79% 60 1.317

C7 C10 60% 55 1.091

C7 C11 55% 25 2.200

C9 C12 74% 20 3.700

C9 C13 92% 30 3.067

Table 1 Yield and time data table of reaction map in figure
6

Figure 6 Reaction Map of Aromatic Compounds

As this problem similar to the knapsack problem, we can
derived the bound formula as

bound = total yield + ((∑time – time taken) * next best
yield/time)

with

total yield = current yield * selected reaction yield

There are a few differences from the knapsack problem,
such as:

 The next best yield/time can only be determined
by accessible compound from the reagent
compound.

 The final bound calculation use the yield/time for
final node to replace the next best yield/time

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

 We assume that the nodes accessible from a
certain node have been determined when we
retrieved the data from the given database.

 If there was no further reaction possible from a
node, and the node isn’t solution node, then
deactivate the node.

Suppose we want to synthesize compound 13, and we don’t
have any compound 7 yet (and later compounds), there are few
possibilities. First, we can start from compound 2, 3, or 5. The
process of getting the result will be summarized on the table
below.

Expanded Nodes Active Nodes

C0

C2 = 0 + (969 * 2.343) = 2270.367

C5 = 0 + (969 * 0.583) = 564.927

C3 = 0 + (969 * 0.653) = 632.757

C3, C2

C36 = 0.62 + ((969 – 95) * 0) (dead
because no further reaction possible)

C37 = 0.46 + ((969 -120) * 3.042) =
2583.118 -

C21 = 0.9 + ((969 – 60) * 0) = 0.9
(dead because no further reaction
possible)

C24 = 0.78 + ((969 – 75) * 0) = 0.78
(dead because no further reaction
possible)

C27 = 0.85 + ((969 – 80) * 3.042) =
2705.188

(C5 dead because reaction possible is
only to compound 2 and compound 2
already accessible from the start)

C27

C37 = 2583.118

C276 = 0.85 * 0.73 + ((969 – 80 – 34)
* 0) = 0.621 (dead because no further
reaction possible)

C278 = 0.68 (dead because no further
reaction possible)

C279 = 3067.9715

C2710 = 0.51 (dead because no further
reaction possible)

C2711 = 0.468 (dead because no further
reaction possible)

C279

C37 = 2583.118

C27912 = 0.497 (dead because no
further reaction possible)

C27913 Solution found, bound =
2451.151

C37

C27913 = 2451.151

C378 = 0.368 (dead because no further
reaction possible)

C379 = 2919.6634

C3710 = 0.276 (dead because no further
reaction possible)

C3711 = 0.253 (dead because no further
reaction possible)

C379
C27913 = 2451.151

C37913 = 2328.187

C27913
Final solution found. Node C37913
dead because the bound is lower. No
other node active.

Table 2 Branch and Bound Decomposition of the Aromatic
Reaction

From the table above, we can determine the solution is C2 –
C7 – C9 – C13, which has the optimum path considering the
yield and time taken.

We should note that the result on the table above is
generated by only considering yield (number of product that
can be generated) and time taken. In reality, many things
should be taken into account and there should be a way to
make a quantification of those things, such as cost, accessibility
to the product, and so on. By looking at the diagram, we could
see that this result is valid because the only possible way to
synthesize compound 13 is by is C2 – C7 – C9 – C13 or is C3 –
C7 – C9 – C13, and it is clear that the yield and time taken in via
C2 is much more effective than via C3.

In real life, the algorithm itself can be applied to a more
complicated reaction map, such as:

Figure 7 A More Complicated Reaction Paths

which won’t be discussed here because there are numerous
possibilities and it will be too long.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

IV. CONCLUSION

By using branch and bound algorithm strategy, the bound
can be counted by using the formula:

bound = total yield + ((∑time – time taken) * next best
yield/time)

with

total yield = current yield * selected reaction yield

and is proven valid as it could generate the optimum path of
the reaction on figure 6.

The branch and bound algorithm can find the optimum path
in organic reactions, given many possibilities, yield, and time
taken. This algorithm can be improved by considering the cost
or money to undergo a reaction. This is also essential because
in industrial world, we should make a production not only time
effective, but also cost effective.

V. ACKNOWLEDGEMENT

I thank Allah SWT for his will so I can finish this paper

and my parents who had always supported me. I also want to

send my gratitude to Mr. Rinaldi Munir and Mrs. Nur Ulfa

Maulidevi as IF 2211 lecturers for both have taught Algorithm

Strategy.

I would also like to thank all the people who were involved

in the process of writing this paper. Thank you for the people

who have helped me both directly and indirectly. I hope this

paper I wrote will help people who read it to gain more

knowledge like I did while writing it.

REFERENCES

[1] Munir, Rinaldi. Diktat Kuliah IF2211 Strategi Algoritma. Bandung:

Teknik Informatika Institut Teknologi Bandung, 2009.

[2] Solomon, Graham T.W. Organic Chemistry. John Wiley & Sons, 2011.

[3] J, Clayden, et al. Organic Chemistry. Ocford, 2001

[4] Zumdahl, Steven S, Susan A. Zumdahl. General Chemistry. Brooks &
Cole, 2010

[5] http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-
computer-algorithms-in-systems-engineering-spring-2010/lecture-
notes/MIT1_204S10_lec16.pdf

[6] https://www.seas.gwu.edu/~bell/csci212/Branch_and_Bound.pdf

[7] http://stanford.edu/class/ee364b/lectures/bb_slides.pdf

STATEMENT

I hereby declare that this paper is my own work and not a
copy, translation, nor plagiarism of somebody else’s work.

Bandung, May 9 2016

Diastuti Utami 13514071

http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/MIT1_204S10_lec16.pdf
http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/MIT1_204S10_lec16.pdf
http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-204-computer-algorithms-in-systems-engineering-spring-2010/lecture-notes/MIT1_204S10_lec16.pdf
https://www.seas.gwu.edu/~bell/csci212/Branch_and_Bound.pdf
http://stanford.edu/class/ee364b/lectures/bb_slides.pdf

