
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Bridge and Torch Problem Using Dynamic

Programming

Varian Caesar | 135140411

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganeca 10 Bandung 40132, Indonesia
113514041@std.stei.itb.ac.id

Abstract—Bridge and Torch Problem is a popular Computer

Science (CS) problem created by Richard Hovasse. It is a simple

problem but very interesting and quite difficult to answer with

brute force. The problem deals with some people crossing the

dark and long bridge, the goal is to move all people from one side

to another side with some constraints and minimum time. There

are many way to solve this problem, but in this paper the author

will show how to deal with this problem using Dynamic

Programming. The idea of Dynamic Programming is to take the

optimal solution for each step that become the subset of real

solution.

Keywords— Bridge and Torch Problem, Dynamic

Programming, optimal solution

I. INTRODUCTION

Nowadays, game is very popular among us. There are so
many genres of the game, including logic game. We needs to
think hard to solve this logic game or we can do a brute force
attack to them, but it will be very exhausting. One of most
popular logic game is Bridge and Torch Problem that asked by
Richard Hovasse. This logic game seems simple but contains
interesting puzzle in it and we can’t underestimate the logic
behind it.

Bridge and Torch problem start with a group of person
where persons > 2 and they needs to move from one side of
bridge to another side by crossing the long and dark bridge.
Unfortunately, the bridge can only hold maximum of C person
on it. They have a torch to light up the bridge but the batteries
is running out in just a few minutes, and the light from it
already reduced. From all people you know that the pace of
walking is different from people-1 to people-k. If two or more
people, where people < C travel from one side to another,
because the torch’s light is not too bright, the travel from one
side to another must follow the slower person’s pace of walk
and since the bridge is long you can’t throw or roll the torch
from another side back to the initial side. The only way to
return the torch is send a person back from another side to
initial side, bring the torch back by themselves.

Figure 1 Bridge and Torch Problem

As the problem said before, the torch is running out of
batteries, so it will last for a few minutes. You must help these
person crossing the bridge with the optimal time so all of them
can cross the bridge before the torch is completely turned off.

 Generally, this problem can be solved by model it into
graph and we search the minimum cost for each vertex using
BFS, DFS, UCS, etc. But in this paper the author wants to
show us how to solve this problem by using the Dynamic
Programming.

II. BASIC THEORIES

A. Dynamic Programming

Dynamic Programming is a method for solving a complex
problem by breaking it down into a collection of simpler
subproblems in recursive manner, solving each those
subproblems just once and storing their solutions using data
structure. The next time the same subproblems occurs, instead
of recomputing its solution, one simply looks up the previously
computed solution.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Dynamic Programming algorithms are often used for
optimization. A dynamic programming algorithm will examine
the previously solved subproblems and will combine their
solution to give the best solution for the given problem. In
comparison, a greedy algorithm treats the solution as some
sequence of steps and pick the locally optimal choice at each
step.Using a greedy algorithm is less optimal because picking
locally optimal choices may result in bad global solution.

The Characteristics of Dynamic Programming :

1. Problems can be divided into some subproblems, for each
step we take one solution

2. For each step there are some state that related to it. In
general, state is all possibilities of input at that step

3. Result from each step will transformed from the
corresponding state to next state in the next step

4. The cost from one step will increase steadily with the
increasing step

5. The cost in a step determined by the cost from previous
step and the cost in that step

6. Best Solution in one step is independent from the other
solution

7. Recursive manner, the best solution in stage k will give the
best solution in stage k+1

There are two approach of Dynamic Programming : Up-down
and bottom-up. If x1,x2,x3,…xn is state variable for step
1,2,3,..., n then :

1. Up-down : Dynamic program start at stage 1 to stage 2, 3
and so on until stage n. The order are x1,x2,x3,…xn.

2. Bottom-up : Dynamic program start at stage n and moving
backward to stage n-1, n-2 and so on until stage 1. The
order are xn, xn-1, …, x1

Sample problem that can be solved using Dynamic
Programming :

1. Shortest Path

2. Capital Budgeting

3. Integer (1/0) Knapsack

4. TSP

III. BRIDGE AND TORCH USING DYNAMIC PROGRAMMING

For the application of Dynamic programming in this
problem, we create a simple Bridge and Torch Problem with 4
people that must cross from southern bank to northern bank
using the bridge and a torch (because its at night). The bridge is
long and dark so you cannot pass the torch by throwing or roll
it in the ground. The person, says A, B, C and D walk with
different pace as follows :

Person Time to travel to another side

A 1

B 3

C 8

D 10

Table 1 Time to travel for each person

Unfortunately the bridge was built in 1890 so it’s very old
and maximum only 2 people that can cross the bridge at the
same time. The torch will running out of batteries in just a few
minutes, can you help them cross the bridge with the optimum
time ?

 There are 2 approach of Dynamic Programming for this
problem :

A. Dynamic programming using Process table

 The conceptual framework we use to construct a
mathematical model for the problem above is sequential
decision processes. That is, we regard the problem under
consideration as a sequential decision problem. We assume
that there will be k crossings, j = 1, 2, …, k.
 Crossing j < k consist of two parts : a group is moved
from the southern bank to the northern banks and then one
person returns the torch from the northern bank to the
southern bank. The last crossing, j = k, consist only of the
first part, as there is no need to return the torch.

Decision variables :
Let
 Xj = group of persons moving from south to north in
 the j-th crossing, j = 1, 2, …, k

 Yj = person returning the torch to the southern bank
 after the j-th crossing, j = 1, 2, …, k

 State Variables :
Let
 Sj = group of person on the southern bank just before
 the j-th crossing, j = 1, 2, …, k

State transition :
Given the above definitions, it follows that the dynamics of
the state variables is governed by the following transition
function :
 Sj+1 = (Sj – Xj) U Yj, j = 1, 2, …, k

Objective function :
Let
 T(Xj, Yj) = t(Xj) + t(Yj)

Then by definition, T(Xj, Yj) is the time to complete a
travel from southern bank to northern bank including the
return of the torch to the souther bank, So it follows :

 F(X,Y) = T(X1, Y1) + … + T(Xk-1, Yk-1) + t(Xk)

The duration of the last crossing is equal to t(Xk) as there is
no need to return the torch to the southern bank.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

The person who returns the torch from northern bank to the
southern bank must be the one with the fastest time. That is,
given that group Sj is currently on the northern bank, person
p will return the torch to the southern bank where t(p) =
min {t(i) , where i in Sj }. Let p(Sj, Xj) denote this person,
then :

Sj+1 = Next(Sj, Xj) = (Sj – Xj) U p(Sj, Xj)

Let D(Sj) denote the set of feasible values of Xj. It follows
then that we can set:

D(Sj) = {Sj}
D(Sj) = {G : G is a subset of Sj such that 2 <= |G| <= C.
 If |G| < C then t(G) < t(p) for all p in Sj}, |S| > C,
 C is the capacity of the bridge.

We now derive a dynamic programming functional
equation for this problem. Solving this equation will yield
an optimal policy for the problem. To accomplish this,
define the state of the process to be the group of persons on
the southern bank, namely G.
Let :

F(S) = minimal crossing time required to move group S
from south to north

With this in mind, let

F(S,G) = minimal crossing time required to move group S
from south to north, given that subgroup G is moved first

Lemma 1 :
F(S) = t(S), |S| <= 2
F(S) = min {T(S,G) + F(Next(S,G))

Finally let D*(S) denote the set of optimal values of G
associated with F(S) :

D*(S) = {S}, 1 <= |S| <= 2

D*(S) = {G* in D(S): T(S,g*) + F(Next(S,G*)) = min

 {T(S,G) + F(Next(S,G)): G in D(S) }, |S| > 2

Example

Consider the example given at the beginning of this
chapters:

j A B C D

t(j) 1 3 8 10

Table 2

Step 1

S F(S) D*(S)

{A} 1 {{A}}

{B} 3 {{B}}

{C} 8 {{C}}

{D} 10 {{D}}

{A,B} 3 {{A,B}}

{A,C} 8 {{A,C}}

{A,D} 10 {{A,D}}

{B,C} 8 {{B,C}}

{B,D} 10 {{B,D}}

{C,D} 10 {{C,D}}

Table 3 Result of Step 1

Step 2
We can now solve F(S) for all S such that |S| = 2 + 1 = 3.
As follows :
S = { {A,B,C}, {A,B,D}, {A,C,D}, {B,C,D} }

For S = {A,B,C} we construct table as follows :

G {A,B} {A,C} {B,C}

p(S,X) A A B

Next(S,G) {A,C} {A,B} {A,B}

t(G) 3 8 8

t(p(S,G)) 1 1 3

F(Next(S,G)) 8 3 3

F(S,G) 12 12 14

Table 4 F({A,B,C})

It follows that F({A,B,C}) = min {12,12,14} = 12. There
are two optimal decision for this subproblem, namely G =
{A,B} and G = {A,C}, hence D*({A,B,C}) =
{{A,B},{A,C}}

Similiarly, we create the table for the rest of S

For S = {A,B,D} we construct table as follows :

G {A,B} {A,D} {B,D}

p(S,X) A A B

Next(S,G) {A,D} {A,B} {A,B}

t(G) 3 10 10

t(p(S,G)) 1 1 3

F(Next(S,G)) 10 3 3

F(S,G) 14 14 16

Table 5 F({A,B,D})

It follows that F({A,B,D}) = min {14,14,16} = 14. There
are two optimal decision for this subproblem, namely G =
{A,B} and G = {A,D}, hence D*({A,B,D}) =
{{A,B},{A,D}}

For S = {A,C,D} we construct table as follows :

G {A,C} {A,D} {C,D}

p(S,X) A A B

Next(S,G) {A,D} {A,C} {A,B}

t(G) 8 10 10

t(p(S,G)) 1 1 3

F(Next(S,G)) 10 8 3

F(S,G) 19 19 16

Table 6 F({A,C,D})

It follows that F({A,C,D}) = min {19,19,16} = 16. There
are only one optimal decision for this subproblem, namely
G = {C,D}, hence D*({A,C,D}) = {{C,D}}

For S = {B,C,D} we construct table as follows :

G {B,C} {B,D} {C,D}

p(S,X) A A A

Next(S,G) {A,D} {A,C} {A,B}

t(G) 8 10 10

t(p(S,G)) 1 1 1

F(Next(S,G)) 10 8 3

F(S,G) 19 19 14

Table 7 F({B,C,D})

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

It follows that F({B,C,D}) = min {19,19,14} = 14. There
are only one optimal decision for this subproblem, namely
G = {C,D}, hence D*({B,C,D}) = {{C,D}}

Finally we can construct the table for step 2 as follows :

S F(S) D*(S)

{A,B,C} 12 {{A,B}, {A,C}}

{A,B,D} 14 {{A,B}, {A,D}}

{A,C,D} 16 {{C,D}}

{B,C,D} 14 {{C,D}}

Table 8 Solution Table for step 2

Step 3
Now we can deal with the group whose cardinality is 4.
There is only one such group, namely S = P = {A,B,C,D}.
For this case, the set of feasible decisions is as follows :

D({A,B,C,D}) = {{A,B}, {A,C}, {A,D}, {B,C}, {B,D},
 {C,D}}

The following table explains how the value of
F({A,B,C,D}) is computed :

G {A,B} {A,C} {A,D} {B,C} {B,D} {C,D}

p(S,G) A A A B B C
Next(S,G) {A,C,D} {A,B,D} {A,B,C} {A,B,D} {A,B,C} {A,B,C}

t(G) 3 8 10 8 10 10
t(p(S,G)) 1 1 1 3 3 8
F(Next(S,G)) 16 14 12 14 12 12
F(S,G) 20 23 23 25 25 30

Table 9 Solution

Thus, F(P) = F({A,B,C,D}) = 20 and the optimal decision
is G = {A,B}, hence D*({A,B,C,D}) = {{A,B}}. This
means that the next state of the process will be
Next({A,B,C,D}, {A,B}) = {A,C,D}. The optimal decision
at this state is G = {C,D}. This will change the satate of the
process to Next({A,C,D}, {C,D}) = {A,B}. The optimal
solution for this state is G’ = {A,B}. The state resulting
from this decision will then be E = {}. It follows then that
the optimal policy is p = {{A,B},{A},{C,D},{B},{A,B}}
or :
A and B move from south to north
A come back to south
C and D move from south to north
B come back to south
A and B move from south to north

B. Dynamic programming Shortest Path reduction

 We already know how to solve Bridge and torch
problem using dynamic programming with decision table.
There is one more way to solve this problem using
Dynamic programming, its by reducing the problem into
Shortest path problem using graph.

Example

With the same example as before, we can represent the
problem using graph. Each node represent a step and value
on the edge represent the time needed to do a travel and
come back again to the south. Value on the node represent
the person on the northern bank. So the graph is as follows :

Figure 2 Bridge and Torch's graph

Now our task is to find the minimum cost from node 1 to
node 8 that represent the solution of Bridge and torch
problem.

Decision Variables :
Let

 Xk = node that we must take at step k
 Cs,xk = cost from s to Xk

State variables :
Let

 s = set of node that we can take at step k + 1

State Transition :
Given the above definitions, it follows that the dynamics of
the state variables is governed by the following transition
function :

 fk(Xk, s) = Cxk,s + fk-1 (Xk)

Objective function :
This recursive show the shortest path from s to X4 at step k:

f1 (s) = Cxk,s

fk (s) = min { Cxk,s + fk-1(Xk) }, k = 2,3,4

So now we can start to solve this problem using Dynamic
Programming :

Step 1
s f1(s) X1

2 4 1

3 9 1

4 11 1

Table 10 Basis for Shortest Path

Because this is a basis, X1 is always the start node, not to
mention node 1.

Step 2

s \ X2 2 3 4 f2(X2) X2

5 13 13 - 13 2 or 3

6 15 - 15 15 2 or 4

7 17 20 20 17 2

Table 11 Table for Step 2

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

As you can see there exist value “-“ it means there’s no
edge connecting both node, you can also give it a value of
infinity to ensure that edge never been selected.

Step 3

s \ X3 5 6 7 f3(X3) X3

8 23 23 20 20 7

Table 12 Table for Step 3

 Now we must reconstructing the global solution using
the table we get so far. We know that the minimal f3(X3) =
20 and it implies the X3 must be node 7, the solution so far
= {7-8}. Now we back to step 2, at s = 7 we get the value of
f2 (7) = min { C2,7 + f1(X1) } = 17 and it implies the X2 must
be node 2. The solution so far = {2 – 7 – 8}. Now we look
at the step 1, step 1 is a basis so the X1 must be the start
node, not to mention node 1. The solution = {1-2-7-8}.

 Now we already know the node transition, our final
task is represent that node into the step of travel for each
person :

From node 1 to node 2, A and B move to the north and then
A come back to the south = 4 minute

From node 2 to node 7, C and D move to the north and then
B come back to the south = 13 minute

From node 7 to node 8, A and B move to the north = 3
minute.

Total = 20 minute.

IV. ANALYSIS AND IMPLEMENTATION

Using Dynamic Programming to determine the step in
Bridge and Torch problem always give an optimal solution.
Because the subproblems of Bridge and Torch problem is
always be the subset of the global solution, so solve the
subprblems will solve the entire problems too.

A. Analysis

Before we do the implementation, we must know what
exactly Dynamic Programming do to solve this problem. As
we can see, Dynamic Programming is different with the
greedy. Greedy algorithm only take decision based on the local
optima, the difference between Dynamic Programming and
Greedy might been seen on step 2 from the example before, as
person C and D are both the slowest person on the group we
can save so much time by traveling them together. But with
greedy, we don’t ever considering the time passed, so we pair
each C and D with A to reach local optima. This decision of
greedy algorithm will waste the speed of person A as the
fastest person on the group.

This problem also can be solved using graph algorithm like
DFS, BFS, UCS, and A-Star. But solving using these algorithm
will need some space in your memory because they need to
expand the tree and manipulating pointer.

B. Implementation

Speaking of algorithm, it’s such a waste if we know the
concept but can’t implement it to the program, so here is the
pseudocode of the program :

And this is the following result of the program :

Function TotalTime(person : array of integer, n : integer) ->

integer

variables

 temp1,temp2 : integer

algorithm

 if (n < 3) then

 -> person[n-1]

 else if (n == 3) then

 -> person[0] + person[1] + person[2]

 else

temp1 = person[n-1] + person[0] + person[n

- 2] + person[0];

temp2 = person[1] + person[0] + person[n-

1] + person[1];

 if (temp1 < temp2)then

 -> temp1 + TotalTime(person, n-2)

 else if (temp2 < temp1)then

 -> temp2 + TotalTime(person, n-2)

 else

 -> temp2 + TotalTime(person, n-2)

end

Program BridgeandTorch

variables

 n,member : integer

 person : array of integer

algortihm

 write("Enter the number of person : ")

 Read(n)

 write("Enter the time each member needs to cross the

bridge");

 for(member = 0; member < n ; member++)

 person[member] = input

 endfor

 Sort(person) //sorting time needed to cross the bridge

 write("The total time take to cross the bridge is: ");

 write(Bridge.TotalTime(person, n));

end

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2015/2016

Figure 3 Implementation of user code

V. FUTURE IMPLEMENTATION

As we can see, the program above still very simple and

only determine the optimal time, for the future implementation

maybe author will add some code that can show us the process

and the solution from step 1 to step k in details.

VI. CONCLUSION

Dynamic Programming always give an optimal solution for
the Bridge and Torch problem. There are 2 approaches of
Dynamic programming for solving this problem : Solve by
using table and solve by reducing it into Shortest path problem.
Both algorithm will give the same and optimal result but the
first approach still can be better in performance because it
needs smaller amount of memories than the second approach
that use graph.

VII. ACKNOWLEDGEMENT

The author thanks to Mr. Rinaldi Munir and Mrs. Nur Ulfa

Maulidevi for their teaching and endorsement in the IF2211

Algorithms’ Strategy course during this semester. The author

also thanks to his friends and fellow students of

Informatics/Computer Science ITB for their assistance all this

time.

REFERENCES

[1] Munir,Rinaldi. Slide Kuliah Program Dinamis (2015). 2015. Accessed 3

May 2016.

[2] http://www.moshe-online.com/tutor/bridge/. Accessed 5 May 2016

[3] Solving bridge and torch puzzle with Dynamic Programming.
http://stackoverflow.com/questions/25399477/solving-bridge-and-torch-
puzzle-with-dynamic-programming. Accessed 5 May 2016

[4] https://page.mi.fu-
berlin.de/rote/Papers/pdf/Crossing+the+bridge+at+night.pdf. Accessed 6
May 2016

STATEMENT

I hereby declare that the paper I wrote is my own work. It is
not a copy nor a translation of someone else’s paper, and not a
plagiarism.

Bandung, May 7-th 2016

Varian Caesar | 13514041

http://www.moshe-online.com/tutor/bridge/
http://stackoverflow.com/questions/25399477/solving-bridge-and-torch-puzzle-with-dynamic-programming
http://stackoverflow.com/questions/25399477/solving-bridge-and-torch-puzzle-with-dynamic-programming
https://page.mi.fu-berlin.de/rote/Papers/pdf/Crossing+the+bridge+at+night.pdf
https://page.mi.fu-berlin.de/rote/Papers/pdf/Crossing+the+bridge+at+night.pdf

