
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 1

NP-Completeness TheoryImplementations in Minesweeper

Problems

Thea Olivia
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13511001@std.stei.itb.ac.id

Abstract–This paper represents the effectiveness and

implementations of NP-Completeness Theory

forMinesweeper Problems. From a sample problem of

Minesweeper, Flood-Fill Algorithm is required for

completing the non-mine space. For solving the problem,

Index Terms–NP-Completeness Theory, Minesweeper, Flood-Fill

I. INTRODUCTION

Minesweeper has its origins in the earliest mainframe

games of the 1960s and 1970s. The earliest ancestor of

Minesweeper was Jerimac Ratliff's Cube. The basic

gameplay style became a popular segment of the puzzle

game genre during the 1980s, with such titles as Mined-

Out (Quicksilva, 1983), Yomp (Virgin Interactive,

1983), and Cube. Cube was succeeded by Relentless

Logic (or RLogic for short), by Conway, Hong, and

Smith, available for MS-DOS as early as 1985; the

player took the role of a private in the United States

Marine Corps, delivering an important message to the

U.S. Command Center. RLogic had greater similarity to

Minesweeper than to Cube in concept, but a number of

differences exist.

Figure 1. Condition if Player Loses

The objective of Minesweeper is to not choose the

mine-containing box of a problem. If the box choosed

containing a mine, the player will lose and end the game

at the same time. If not, the chosen box may contains

blank space or number , usually range one until six. If it

is a blank space, then the blank space will expand and

open other nearby boxes containing blank spaces or

even reveal boxes containing numbers. On the other

hand, if it is a number, then the box only open the

chosen one. The numbers are indicating how many mine

in 9x9 radius box unit field. For instance, in a case the

number is two, then in the 9x9 radius of the number,

two mines, or bombs, are placed randomly. So with this

numbers, players can take them as clues for solving the

puzzles.

Figure 2. Condition If Player Wins

mailto:13511001@std.stei.itb.ac.id
http://en.wikipedia.org/wiki/Puzzle_game
http://en.wikipedia.org/wiki/Puzzle_game
http://en.wikipedia.org/wiki/Puzzle_game
http://en.wikipedia.org/wiki/Mined-Out
http://en.wikipedia.org/wiki/Mined-Out
http://en.wikipedia.org/wiki/Quicksilva
http://en.wikipedia.org/wiki/Virgin_Interactive
http://en.wikipedia.org/wiki/United_States_Marine_Corps
http://en.wikipedia.org/wiki/United_States_Marine_Corps
http://en.wikipedia.org/wiki/United_States_Marine_Corps

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 2

There are multiple solutions to solve one problem, thus

Non-determinisitic is the right word to describe

Minesweeper Algorithm in general, specifically for

responding to Player control by choosing an unopened

box. Then, the solutions will be completed by NP-

Completeness principles. NP-Completeness is chosen

because it’s use non-deterministic options for determine

The aim of this paper is to determine whether NP-

Completeness theory satisfies Minesweeper problems,

particularly in determining whether the box is a blank

space, number or mine, and Flood-Fill Algorithm in

expanding of mines, numbers and blank spaces.

II. BASE THEORIES

2.1. Box Matrices

Box matrices is used for creating the field containing

boxes. Every element in the matrix containing boxes,

for the example representation is as following:

1 2 ∗
∗ 3 3
∗ 2 2

2 1 0
∗ 2 0
∗ 2 0

Asteriks(*) are the symbol of mines, while zero is the

symbol of blank spaces, and numbers are symbolizing

the representative number in the game. The mechanism

is when player choose a box, the Gaussian Elimination

will be used to eliminate chosen box. If the player

choose a mine box, there will be loop occured in the

game, and stop until Flood-Fill algorithm reach its

boundary to end the game. On the other hand if its a

zero, there will be Flood-Fill Algorithm for expansion

of the blank space to its homologue neighbours.

2.2. Flood-Fill Algorithm

Flood-fill Algorithm is an Algorithm used for

determining area connected to a given node in a multi-

dimensional array. Also dubbed as Seed Algorithm,

usually used for coloring. In this Minesweeper case,

Stack-based Flood-Fill Algorithm is used for item

expansion, such as numbers, blank spaces, and mines.

Here below is the stack-based step of Flood-Filling

Algorithm:

Flood-fill (node, target-color,

replacement-color):

 1. If target-color is equal to

replacement-color, return.

 2. If the color of node is not equal

to target-color, return.

 3. Set the color of node to

replacement-color.

 4. Perform Flood-fill (one step to

the west of node, target-color,

replacement-color).

 Perform Flood-fill (one step to

the east of node, target-color,

replacement-color).

 Perform Flood-fill (one step to

the north of node, target-color,

replacement-color).

 Perform Flood-fill (one step to

the south of node, target-color,

replacement-color).

 5. Return.

Hopefully, this step is going to obtain best case time

complexity, O(n).

2.3. NP –Completeness

Figure 13. Euler's Diagram of P, NP and NPC

Dependencies

An algorithm to NP-Completeness is needed for

checking verifications on steps are polynom-oriented

algorithm. Example of NP-Completeness can be used to

solve Integer Knapsack Decision problem. In order, to

show whether a problem can be solved through NPC

can be done by following these steps :

1. 𝑆𝑜𝑤 𝑤𝑒𝑡𝑒𝑟 𝑋 𝑖𝑠 𝑎 𝑚𝑒𝑚𝑏𝑒𝑟 𝑜𝑓 𝑁𝑃.

2. 𝐶𝑜𝑜𝑠𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒, 𝑠𝑎𝑦 𝑌, 𝑓𝑟𝑜𝑚 𝑁𝑃𝐶 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑟𝑜𝑏𝑙𝑒𝑚𝑠

3. 𝑆𝑜𝑤 𝑎𝑛 𝑎𝑙𝑔𝑜𝑟𝑖𝑡𝑚 𝑖𝑛 𝑝𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 3

𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑖𝑛𝑔 𝑌 𝑏𝑒𝑐𝑜𝑚𝑒 𝑋.

Flood-Filling Algorithm is one of good sample for this.

In this case, X is the node will be colored. X is the

member of NP, because to coloring the nodes have

many options that resulting the solving style is non-

deterministic. Choose the blank node as Y, then the Y

become transformed into X.

And then the solution of the puzzle. The selected box

undoubtly non-deterministic, because player are not

ought to choose the same box in every game. The

selection listener connect the box, which is analogue to

X, and the Y is the positions of the mines.

2.4. The Items

In this game, containing many items to be used in

the game

2.4.1. Mines

Mines are the trigger of this game, and must be

avoided in order to win the game. However, Mines in

the program representated by asterisk (*) mark in the

matrix.

2.4.2. Numbers

The numbers, ranged from one to six, is the

number of mines sorrounding the number in a 3x3

matrix, while the positions of the number is in the center

(2,2) matrix index.

2.4.3. Blank-Spaces

Blank spaces are properties for clearing the boxes

on the field. It used Flood-Fill algorithm for the

expansion, and reveal any blank spaces within it

neighbour. However, the boundary for the expansion

has set on the mine, thus the blank space only uncover

other boxes containing blank spaces.

2.4.4. Flags

Flags are used to mark boxes, especially when

player preference is memorizing the position of the

mines. The Flags

Function NP-Completeness(n node, IsND :

boolean) -> boolean

Variables

ALGROITHM

For [1..n] do

 If IsND = true then

 Return NP-Completeness(true);

The pseudo code described above assumes that every

actions' cost is 1. Because the algorithm traverses a 2D

matrix, the algorithm will run in the speed of 𝑂(𝑚𝑛)

with the required space of 𝑂(𝑛) . A possible

improvement is to reduce the space complexity from

𝑂(𝑛) to 𝑂(𝑚) , observing that the algorithm only

requires that the previous row and current row can be

stored at any one time.

III. IMPLEMENTATION AND EXPERIMENT

3.1. Implementation

For the experiment, an implementation of the Flood-

Fill Algorithm has been written in JavaScript. Below are

the implementation of the algorithm.

index: function(x, y){

// If square is not revealed, is

within boundaries and exists

if(x >= 0 && y >= 0 && x <=
globals.squaresX && y <=

globals.squaresY &&
globals.mineMap[x] !== undefined){

var l = (globals.revealedMap[x][y]) ?

1 : -1;

if(!util.is('revealed', x, y)){

// Add revealed square to the

revealed array

globals.revealedMap[x][y] = 1;

if(globals.mineMap[x][y] !== -1){

// 'remove square', by drawing a
white one over it

var alpha = 0.1,

squareFade = setInterval(function(){

globals.context.strokeStyle =
'white';

globals.context.fillStyle =
'rgba(255,255,255,' + alpha + ')';

util.roundRect(x, y);

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 4

if(globals.mineMap[x][y] !== -1){

alpha = alpha + .1;

if(alpha > 1){

window.clearInterval(squareFade);

}

}, 50);

// jika kotak yang dipilih tidak

dikelilingi mine

}else{

// trigger jika player memilih kotak
yang terdapat mine

var mine = new Image();

mine.src = defaults.mineImg;

mine.onload = function() {

action.revealMines(mine);

};

}

if(globals.mineMap[x][y] === 0){

// membuang seluruh kotak hingga
tersisa yang mengelilingi mine

for(var i = -1; i <= 1; i++){

for(var j = -1; j <= 1; j++){

// looping jika sesama blank space

if(l < 0 && x + i >= 0 && y + j >= 0

&& x + i <= globals.squaresX && y + j
<= globals.squaresX){

action.index(x + i, y + j);

}

}

}

3.2. Source Code For Generating Items

A problem with the above implementation of Flood-Fill

algorithm is that it have to set boundaries to

process.Without that boundaries, the program will

return the mines and other items crashing in one box.

To make the way around, an observation of source code

reveals that more than half of the characters in the

source code are whitespaces. These whitespaces can be

safely ignored, reducing the length of the source code

string.

Below are the code for generate and reveal boxes with

mine;

generateMines: function(){

// Untuk setiap kotak

for(var i = 0; i < globals.squaresX;

i++){

globals.mineMap[i] = new

Array(globals.squaresX);

// makin rendah tingkat kesulitan,

makin banyak mine

for(var j = 0; j < globals.squaresY;

j++){

globals.mineMap[i][j] =

Math.floor((Math.random() *

defaults.difficulty) - 1);

if(globals.mineMap[i][j] > 0){

globals.mineMap[i][j] = 0;

}

}

}

action.calculateMines();

},

calculateMines: function() {

var mineCount = 0;

globals.totalMines = 0;

// cek kotak

for(var i = 0; i < globals.squaresX;

i++){

for(var j = 0; j < globals.squaresY;

j++){

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 5

if(globals.mineMap[i][j] === -1){

var xArr = [i, i + 1, i - 1],

yArr = [j, j + 1, j - 1];

/*

Ilustrasi iterasi kotak:

| i - 1 | i | i + 1 |

| j - 1 | j - 1 | j - 1 |

| i - 1 | i | i + 1 |

| j | j | j |

| i - 1 | i | i + 1 |

| j + 1 | j - 1 | j + 1 |

*/

for(var a = 0; a < 3; a++){

for(var b = 0; b < 3; b++){

if(util.is('mine', xArr[a],

yArr[b])){

globals.mineMap[xArr[a]][yArr[b]]++;

}

}

}

globals.totalMines++;

}

}

}

},

3.3. Experiment

The test cases for the experiment is taken from several

source codes from assignments of a JavaScript course,

thus making all test case source codes are written in

JavaScript.

1. Test case where player choose the difficulty of

the game, whether it is Easy, Medium, or

Expert.

2. Test case where the first attempt reveals mine

and game over.

3. Test case where the first attempt a blank space,

then expanding to neighbouring blank spaces.

4. Test case where the first attempt reveals

number, then expanding to neighbouring same

number.

The test case (1) serves no control for Flood-Fill

Algorithm while the rest serves as the variable for

Flood-Fill Algorithm.

IV. ANALYSIS

4.1. Game Analysis

Basically, Minesweeper are the collection of the

matrices in a game. The matrices have logical

relationships to the listener. If player choose a box and

an another, there will be a logical comparison within the

game. If the one other is selected, the next step will be

different from the first box.

The main difficulties in putting these gadgets together

are concern firstlyhow to make other standard gates

(such as OR, and so on) out of the onesalready found,

and secondly how to cross wires over one another.

Summarizing, to determine whether a given grid of

uncovered, correctly flagged, and unknown squares, the

labels of the foremost also given, has an arrangement of

mines for which it is possible within the rules of the

game. The argument is constructive, a method to

quickly convert any Boolean circuit into such a grid that

is possible if and only if the circuit is satisfiable;

membership in NP is established by using the

arrangement of mines as a certificate.

4.2. Breaking the Algorithm

The experiments conducted shows that the NP-Theory

is a good measurement for solving the puzzle, and

Flood-Fill Algorithm for expanding mines, numbers and

blank spaces. However, the NP-Completeness can be

manipulated to avoid the test case (2) by following these

tricks:

1. Adding exception handling in initiating the

programs on the source code;

2. Setting conditions for mine in the program

http://en.wikipedia.org/wiki/Boolean_circuit
http://en.wikipedia.org/wiki/If_and_only_if
http://en.wikipedia.org/wiki/Circuit_satisfiability_problem

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 6

By adding exception, an unwanted case can be aborted

by inserted it into exception and throw it when the first

box of mine in a first attempt is true. Fortunately,

JavaScript is a derivation of Java which is purely

Object-Oriented Programming Language. So adding the

exception will cause no problems.

However, it can worsen space complexity but increase

time complexity at the same time. With exception

handling, the algorithm become increased in memory

consumption but handle same process with the previous

code when not added the handler.

4.3. Algorithm Performance

The time complexity of Flood-Fill algorithm is 𝑂(𝑛),

where 𝑛 represents the squares in the game field.

However, the hidden constants is small because there

are no preprocessing for the algorithm for work and the

main loop for matrix traversal consists of a single if-else

statement. During the experiment, attempts to measure

the speed of algorithm resulted in the speed of 0.002 ms

to 0.003 ms on a modern 2,5 GHz processor. The

algorithm is fast enough to be implemented on a

processing-heavy environment.

The space complexity of NP-Completeness algorithm is

𝑂(𝑛) , where 𝑛 represents the mine. While this

maximum input length varies over the difficulties, and

the best-case of

V. CONCLUSION

The NP-Principles are one of the best solutions to solve

Minesweeper Puzzles. There are many methods to

solving, notable is Naïve (Brute-Force), but the time

and space complexity are worse than Non-Deterministic

Polynom Theory.

For the expansion, the Flood-Fill Algorithm is fast and

satisfying enough for processing artificial intelligence

inside the Minesweeper game. However, the original

implementation of the algorithm has a weakness in the

high space complexity, especially in Expert difficulty

where the Gaussian Matrices are far more complicated.

VI. REFERENCE

[1] Munir, Rinaldi. 2009. Diktat Kuliah IF2211

Strategi Algoritma. Program Studi Teknik

Informatika ITB.

[2] Arefin, Shamsul Ahmed. 2009. Art of

Programming Contest 2nd Edition.

[3] Halim, Steven and Halim, Felix. 2013.

Competitive Programming: The New Lower

Bound of Programming Contests.

[4] https://github.com/Joeynoh/HTML5-

Minesweeper/

[5] http://stackoverflow.com/questions/1738128/min

esweeper-solving-algorithm

[6] http://web.mat.bham.ac.uk/R.W.Kaye/minesw/or

dmsw.htm

[7] http://www.minesweeper.info/articles/Mineswee

perStatisticalComputationalAnalysis.pdf

VII. ACKNOWLEDGEMENT

This paper is written by Thea Olivia, intended for an

assignment in IF2211 Algorithm Strategy course in

Institut Teknologi Bandung at 2015. The writer

sincerely apologized for grammar mistakes and will be

get better on the next opportunities.

The writer wants to express her gratitude first to Our

Father in Heaven for all his grace and guidance in

writing this paper, and then to Dr. Ir. Rinaldi Munir,

M.T. and Nur Ulfa Mauliadewi, as her lecturers on the

course. The writer also express her gratitude to the

friends and the family of HMIF ITB (Himpunan

Mahasiswa Informatika ITB) who had given their best

for helping the idea of this paper.

The writer also very grateful for GitHub user Joeynoh

for such an inspiration.

VIII. NOTES

A repository containing the sample source code for the

experiments, along with the test cases and a digital copy

of this document is available on the Internet at

https://github.com/teaolivia/MySweeper.

IX. DISCLAIMER

I hereby declare that the paper I wrote is my own work.

It is not a copy nor a translation of someone else’s

paper, and not a plagiarism.

Bandung, 5th May 2015

https://github.com/Joeynoh/HTML5-Minesweeper/
https://github.com/Joeynoh/HTML5-Minesweeper/
http://stackoverflow.com/questions/1738128/minesweeper-solving-algorithm
http://stackoverflow.com/questions/1738128/minesweeper-solving-algorithm
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm
http://web.mat.bham.ac.uk/R.W.Kaye/minesw/ordmsw.htm

Paper IF2211 Strategi Algoritma – Sem. II Year 2014/2015 7

Thea Olivia

NIM. 13511001

