
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

Implementation of Backtracking Algorithm in Hamiltonian

Cycle

Octavianus Marcel Harjono / 13513056

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13513056@std.stei.itb.ac.id

Abstract—Backtracking is a general algorithm to find

solutions in common problem. The backtracking algorithm is

based on Depth-First Search Algorithm, but it is more efficient

because it has bounding function in it. Backtracking algorithm

is commonly used in games such as tic-tac-toe solver, sudoku

solver, and many more. This paper will explain how to find

Hamiltonian Circuit from a graph using backtracking

algorithm. Hamiltonian circuit is a graph cycle that has a closed

loop which path visits each node/vertex exactly once.

Index Terms—Backtracking Algorithm, Hamiltonian

Circuit, Hamiltonian Cycle, Graph, DFS-Based Algorithm

I. INTRODUCTION

The Icosian game, introduced by Sir William Rowan

Hamilton who was an Irish mathematician, is known as

Hamiltonian Circuit (HC) problem. Hamiltonian circuit,

also called Hamiltonian cycle, is a graph cycle through a

graph that visits each node exactly once except for the

starting node (which also the ending node) is twice. A

graph is said to be Hamiltonian if it contains Hamiltonian

Circuit, otherwise the graph is nonhamiltonian. The Icosian

game itself uses graph like Dodecahedron which is

Platonic solid and has Hamiltonian Circuit in it.

Figure 1. Dodecahedron Example

(http://nrich.maths.org/2320)

II. FUNDAMENTAL THEORY

A. Depth-First Search Algorithm

Depth-First Search algorithm (DFS algorithm) is one of

common strategy to find solution. It either uses a dynamic

tree which is created along the searching or uses a given

tree. DFS algorithm, like Breadth-First Search algorithm

(BFS algorithm) has several components, they are:

1. Problem state: nodes within the dynamic tree that

fulfill the constraints

2. Solution state: one or more states that declare

problem state.

3. Goal state: solution state which is a leaf node.

4. Solution space: set of all solution states.

5. State space: all nodes in the dynamic tree

B. Backtracking Algorithm

Backtracking algorithm is a DFS-based (Depth-First

Search based) algorithm. While DFS algorithm will try to

find solution from root to each leaf, backtracking algorithm

will just find solution from root to a certain depth

depending on its bounding function.

There are several important components on

backtracking algorithm:

1. Solutions

Solution is declared by an n-tuple vector:

𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑥𝑖 𝜖 𝑆𝑖

It is possible that 𝑆1 = 𝑆2 = . . . = 𝑆𝑛

2. Generating function for 𝑥𝑘

Declared as a predicate: 𝑇(𝑘)

 𝑇(𝑘) generates value for 𝑥𝑘, which is a

component from vector of solutions.

3. Bounding function

Declared as a predicate: 𝐵(𝑥1, 𝑥2, … , 𝑥𝑘)

B is true if (𝑥1, 𝑥2, … , 𝑥𝑘) leads to a solution.

If it is true, then generating function for

𝑥𝑘+1 continues, if it is false, then (𝑥1, 𝑥2, … , 𝑥𝑘)

is thrown away from the solutions.

There are several principles in finding solutions with

backtracking algorithm, they are:

1. Solutions are searched by making a path from root

to leaves. This is from DFS algorithm. The nodes

that have been created are called ‘live node’. Live

nodes that are being expanded are called ‘expand-

node’.

2. Every time expand-node is expanded, path that has

been built is longer. If the path does not lead to the

solution, the path is ‘killed’ and becomes a dead

node. Function used for killing this expand-node is

bounding function. Dead node will never be

expanded again.

3. If the process of making path ends with dead node,

then the searching continues by evoking another

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

child node. If there is no more child node, then it

will evoke the nearest parent node alive. This node

will be the new expand-node.

4. The searching ends if we have found the solution or

if there is no more live node for backtracking.

C. Graph

Graph is used to represent discrete objects and the

relation within the objects. Graf is a set of vertices that are

not empty and a set of edges which connect a pair of

vertices. Graph’s notation is 𝐺 = (𝑉, 𝐸) where G is Graph,

V is set of vertices 𝑣1, 𝑣2, … , 𝑣𝑛 and E is set of edges 𝑒1,
𝑒2, … , 𝑒𝑛.

Graph’s terminology:

1. Adjacency

Two vertices are adjacent if both vertices are

directly connected.

2. Incidence

For any edge 𝑒 = (𝑣𝑗 , 𝑣𝑘), e is said incident with

vertex 𝑣𝑗, or e is incident with vertex 𝑣𝑘.

3. Isolated vertex

Isolated vertex is a vertex that does not have edge

that is incident with it.

4. Empty graph

Empty graph is a graph which set of edges is an

empty set.

5. Degree

A degree of a vertex is the number of edges which

are incident with the vertex.

6. Path

A path with length n from starting vertex 𝑣0 to 𝑣𝑛 is

a line which forms ‘vertex-edge-vertex’ pattern.

There are Euler path and Hamilton path.

7. Cycle

Cycle or circuit is a path which starts and ends at the

same vertex. There are Euler circuit and Hamilton

circuit.

8. Connected

Two vertices are connected if there exists a path

between those vertices.

9. Subgraph

If we have a graph 𝐺 = (𝑉, 𝐸), then graph 𝐺1 =
(𝑉1, 𝐸1) is a subgraph of G if 𝑉1 is subset of 𝑉, and
𝐸1 is a subset of 𝐸.

10. Spanning Subgraph

Subgraph 𝐺1is called spanning subgraph if 𝐺1has all

vertices from 𝐺.

11. Cut-set

Cut-set is a set of edges that if the edge is deleted, it

will cause 𝐺 not connected Cut-set always yields

two components.

12. Weighted graph

Weighted graph is a graph which every edge of it is

given a weight or value.

D. Hamiltonian cycle

On section C (Graph), there are several terminologies

about graph. One of it is cycle (point 7). Hamiltonian cycle

is a cycle or circuit which goes through every vertex

exactly once, except for the starting vertex (which also the

ending vertex) which is twice. There may be more than one

Hamilton circuit for a graph, and then we often wish to

solve for the shortest such path. This is often referred to as

traveling salesman problem (TSP) but the graph is a

complete weighted graph. Every complete graph (n>2) has

a Hamilton circuit. (http://www.pballew.net/graphs.html)

Dirac’s Theorem: If each vertex of a connected graph

with n vertices (where n>3) is adjacent to at least n/2

vertices, then the graph has a Hamilton circuit.

Figure 2. Dodecahedron with Hamiltonian Cycle in it.

http://curvebank.calstatela.edu/hamiltoncircuit/hamilto

ncircuit.htm)

III. ANALYSIS AND IMPLEMENTATION

A. Backtracking Algorithm Implementation

Backtracking Algorithm (recursive):

Backtracking Algorithm (iterative):

procedure backtracking(input k: integer)

{Finding all solutions with backtracking algorithm;

iterative scheme

Input: k, the index of solutions vector, x[k]

Output: Solution x = (x[1], x[2], …, x[n])

}

ALGORITHM

for each x[k] which has not been tried so that

x[k] T(k) and B(x[1], x[2], …, x[k])) do

if(x[1], x[2], …, x[k] is path from root to leaf)

then

PrintSolution(x)

endif

backtracking(x)

endfor

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

B. Illustrative Example

In this paper we will use backtracking algorithm to find

solutions to Hamiltonian Circuits Problem. The idea to find

the solution of it is like the idea of backtracking algorithm

itself. Let us say we have a connected graph with n = 8 like

figure 3 below.

Figure 3. Example of Graph with Eight Vertices

First we have to choose a root node, in Hamiltonian

Circuits is the starting vertex. Then we have to make the

bounding function. In Hamiltonian cycle, the bounding

functions is: 1. Every node selected has not been selected

before, 2. Every node selected must have edge connecting

it to previous node (these vertices have to be adjacent), 3.

Last node selected has to be the first node selected.

After making the bounding function, we have to explore

the root node and see whether it has edge along the

remaining nodes. In this case if we choose vertex 1 as the

starting vertex (which also the ending vertex), then we have

vertex 2 to vertex 8 as the remaining nodes. We have to

check whether vertex 1 has edge connecting to each vertex

2 until vertex 8. If it does not have the connecting edge,

then it becomes dead node, so we do not have to expand

the node.

In this case, vertex 1 is only adjacent with vertex 2 and

vertex 3, so the rest of it become dead node.

Figure 4. State Space Tree

Then we only can choose node 2 or node 3.

Doing it continuously, and if the expand-node has a

child node which is the starting vertex but it has not gone

through every other vertex, it becomes dead node too

because it is not a Hamiltonian circuit.

If it has reach the leaf and it is still a dead node, then we

have to evoke the nearest child node, and if it has no alive

child node, we have to evoke the nearest parent node.

Figure 5. Final State Space Tree

In every step of expanding the node, it should be like at

procedure backtracking(input n: integer)

{Finding all solutions with backtracking algorithm;

iterative scheme

Input: n, the length of solutions vector

Output: Solution x = (x[1], x[2], …, x[n])

}

DICTIONARY

 k: integer

ALGORITHM

k 1

while k>0 do

if (x[k] has not been tried so that x[k] T(k) and

B(x[1], x[2], …, x[k])) then

if(x[1], x[2], …, x[k] is path from root to leaf)

then

PrintSolution(x)

Endif

k k + 1

else

k k – 1

endif

endwhile

{k = 0 }

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

Figure 4, every vertex that has no edge connecting them is

thrown away from solutions vector.

Since it has found the solution we are looking for, so it

just returns the solutions vector <1,2,8,7,6,5,4,3,1>

In this example, it just looks like DFS because there are

few edges in most vertices and we cannot check if there

exists Hamiltonian cycle using Dirac’s Theorem because

not all vertex has at least four other vertices adjacent to it.

In this case, suppose that it is not the solution, then we

have to go backtracking to the root (vertex 1), make the

node to vertex 2 a dead node, and then expand the node to

vertex 3, and so on.

C. Analysis on The Algorithm

The difference between DFS and Backtracking

algorithm on finding solutions for Hamiltonian Circuit is

the restriction (bounding function). The backtracking

algorithm is said to be more efficient than DFS because in

every step in backtracking algorithm, it has thrown away

all the nodes that do not lead to the solutions.

V. CONCLUSION

 The backtracking algorithm explained in this paper is

only a pseudo code but it can be implemented and it can

produce the right solutions to Hamiltonian Circuit

problem. Although backtracking algorithm is based on

Depth-First Search algorithm, his algorithm is more

efficient than DFS algorithm because it has bounding

function in it which forbids the program to continue

expanding the node that does not lead to solution.

REFERENCES

[1] http://mathworld.wolfram.com/HamiltonianCycle.html

accessed: 4 May 2014, 23.30
[2] Munir, Rinaldi. Diktat Kuliah IF2211 Strategi Algoritma. Program

Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika,

Institut Teknologi Bandung, 2008, page 167 -185.
[3] http://nrich.maths.org/2320

accessed: 4 May 2014, 23:51

[4] http://curvebank.calstatela.edu/hamiltoncircuit/hamiltoncircuit.htm
accessed: 4 May 2014, 23.56

[5] http://www.pballew.net/graphs.html

 accessed: 4 May 2014, 23:59

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 4 May 2015

Octavianus Marcel Harjono / 13513056

