
Validating Distance Matrix of a Weighted Tree
Aufar Gilbran – 13513015

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13513015@std.stei.itb.ac.id

Abstract—Today's technology and bussiness could leave
people 10 years in the past dumbfounded. The high
advancement rate of these two fields are driven by new
knowledges discovered by fields in computer science. These
knowledges helps menial things that must be done by
humans to be automated processes. Unfortunately, people
cannot discovered any knowledges without any data. People
can extract knowledges from some set of data (or dataset)
that was obtained from real events. But these dataset might
not come from our works. They could be from other
experiments, government, or statistical surveys. In this
case, the format of the dataset might not come with the
desired format. In this paper, we're going to see how to
determine if a matrix is a distance matrix of a weighted
tree given a distance matrix. This is useful because matrices
is very common to represent data and a weighted tree will
come in handy for data classifiers in data mining.

Index Terms—Data Manipulation, Weighted Tree,
Distance Matrix, Depth First Search

I. INTRODUCTION - WHY IS IT IMPORTANT?

Today's technology is very advanced compared to 10
years ago. We have smartphones, internets, social
medias, and other things that could leave people 10 years
in the past dumbfounded. But the interesting part is not
how we have advanced in 10 years, but how the “rate of
advancement” has advanced in 10 years. The
advancement of technology from year 2005-2015 is much
bigger than 1995-2005. Sure, 1995-2005 have a big
advancement too (database technology, object-oriented
languages). But it's not as big as 2005-2015 (Google has
automated image descriptor, it can identify pizzas and
other things in pictures!). Even so, the advancement from
year 1995-2005 is still much bigger than 1985-1995.
This is called as accelerating change[1]. Accelerating
change is based on observation that technological
advancement is increase throughout the history. But why
is this happening? There are many factors in it, but one
of the interesting factor is the quality of data.

Data is a value or maybe a set of values that represent
a quality or quantity that is restated into individual pieces
of information. Data is commonly measured, collected, or
analyzed in an observation. There are numerous methods
of data collections and it determines feasibility and
quality of the data. For example, you can measure a
metal's temperature just by it's radiation of heat. It's easy
and cheap to do that but the quality is very poor. As an
alternative you can use a thermometer to measure the

temperature. It wasn't until 1638 when Robert Fludd
created the first thermometer, so early on we could say
that using a thermometer isn't feasible solution at all. But
given a thermometer, you can measure a temperature
with a very good accuracy. With the advancement of
technology, people can measure data in better accuracy.
Accordingly, this leads to a better knowledge quality.
Sadly, even the most accurate data won't be helpful if we
cannot do easy operations in it.

Matrices is the most common way to represents data. It
provides a very descriptive information in human-
readable format. Unfortunately, operations in matrices
are very costly. Another thing to consider is how we
process the data afterward. One of the most common
computation methods to classification and regression of
data is Random Forests. This method utilize data in tree
format and then do computation on the tree. We want to
have each of their advantages that is, it's easier for
humans to work on matrices and it's easier for computers
to work on trees. We can easily convert matrices to trees
if we know that the matrices come from a tree. But what
if we don't know where the matrices come from? Here
we're going to see some of the ways to classify if any
given matrix is a distance matrix of a weighted tree.

II. DEFINITIONS, ASSUMPTIONS AND ALGORITHMS

Throughout this paper, we will always assume that
there's no data loss in matrices. That is for a matrix M,
Mij is always have a quantifiable value. Also, since we're
validating matrices

Throughout this paper, we will always assume that
there's no data loss in matrices. That is for a matrix M,
Mij is always have a quantifiable value. Also, since we're
validating matrices as distance matrices of weighted
trees, we know that M must be a square matrix. That is
M will always have same number of rows and columns.

As for variables name conventions, it will defined
before each use. If there's no variable name definitions, N
will correspond to the number of rows for matrix M
(which means it's also the number of columns). V will
correspond to the number of vertices in a graph. The
value of V will always equal to N, but it has different
semantics. E will correspond to the number of edges in a
graph.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

A. Definitions
This section will introduced the definitions that are

need in order to comprehend this paper

 A.1. Weighted Trees
A tree is a graph that contains no cycle in it. Formally,

a tree is a graph G = (V, E) such that there's no subset E'
of E that could arrange a sequence of edges e'1, e'2, … ,
e'k-1, e'k such that e'1={u, v}, e'2={v, w}, …, e'k-1={y, z},
e'k={z, u}. A weighted tree is a tree such that each edge
in E is given a value.

 A.2. Distance Matrices
A distance matrix is a matrix that each element of the

matrix is measured by the distance of vertices in the
corresponding row and column. Formally, a distance
matrix is a matrix M such that Mij=dist(vi, vj) where vi is
the vertex identified with the number i. This means the
following properties must hold for a matrix to come from
a weighted tree:

1. Mii=0
2. Mij=Mji

3. Mik+Mkj=Mij

These properties are sufficient and necessary
conditions for a matrix to be a distance matrix. Thus we
can based our proves from these properties (in fact we're
going to abuse it).

B. Algorithms
This section will introduce the algorithms that are

needed in order to comprehend this paper.

 B.1. Greedy Algorithm[2]

Greedy Algorithm is an algorithm that always make
locally optimal choice from a candidate set at each state
to achieve the global optimum. The algorithm will never
reconsiders the choices made so far and will continue
until a complete solution is created. This algorithm is just
a base introduction for the next algorithm, it will not be
used in how to validate a distance matrix of a weighted
tree.

In general, greedy algorithms have five components:
1. A candidate set, from which a choice is made to

create the solution
2. A selection function, which chooses the best

candidate to be added to the solution
3. A feasibility function, that is used to determine

if a candidate can be used to create the solution
4. An objective function, which assigns a value to

a solution, or a partial solution
5. A solution function, which will indicate when

we have discovered a complete solution

Most of the time, Greedy Algorithm will produce good
solutions for mathematical problems. Unfortunately, it's
rarely produce good solutions for other type of problems.

For a Greedy Algorithm to succeed, the problem which
the algorithm applied to need to satisfy the sufficient
conditions. The most common conditions is:

1. Greedy Choice Property

The choice made by a greedy may not depend on future
choices. It may depend on choices made so far.

2. Optimal Substructure
An optimal solution to the problem contains optimal
solutions to the sub-problems.

These properties is a sufficient conditions but is not a
necessary conditions. There are other conditions which
can determine if the Greedy Algorithm will succeed or
not. But none of them is proven to be necessary condition
for the algorithm to get the desired result.

B.2. Kruskal's Algorithm[3]

Kruskal's Algorithm is used to construct a minimum
spanning tree given a general connected graph. A
minimum spanning tree is a tree with minimum sum of
edges that consists of vertices from the original general
graph. Formally, given connected graph G = (V, E) we
want to construct a graph T = (V, E') where V is the set of
vertices, E is the set of edges, E' is subset of E and total
of the weights in E' is minimal.

Kruskal's Algorithm is based on Greedy algorithm.
The algorithm follows these steps:

1. Create a forest F such that each vertex is a tree
and disjoint from other vertices. A forest is a set
of trees.

2. Create a set S as candidate set.
3. Define a selection function which pick an edge

with minimum weight in set S.
4. Define a feasible function that determine if an

edge is appropriate to be added. An edge is
appropriate if and only if it connects two
different tree and combines it into a single tree.

While S is not empty and F is not yet spanning
5. Pick an edge with selection function
6. Determine if adding the edge is feasible to

current solution using feasibility function.
7. If it is, add the edge to current solution and let

objective function add value to new current
solution.

To better illustrate the process, take a look at the
following table:

Here we pick the minimum
edges e = {1,2} with
weight = 2. Since vertices
1 and 2 are on different
tree, we can connect and
combines them

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

This is the same with the
last step. An alternative is
we pick an edge e = {0, 2}.
There can be many
minimum spanning trees in
a general graph. If we just
want to find one, we can
just pick whichever.

In this step, since vertex 0
and 2 is already on the
same tree, it won't be
combined.

Pick the minimum edge,
that is e = {0, 3}. Since
vertex 3 is not on the same
as vertex 0, we can connect
it and then combines it into
a single tree.

This is the same with the
last step.

The remaining edges won't
be used since we already
got our spanning tree.

Table 1. Kruskal's Algorithm Example
We can prove the correctness of this algorithm by

proving the algorithm will produce spanning tree and by
proving the algorithm will produce minimum total edges
weight.

Let T is the result of this algorithm from connected
graph G. T cannot have a cycle since feasible function in
step 4 prevents it do so. T cannot be disconnected since
he first encountered edge that joins two components of T
would have been added by the algorithm. Thus T is
spanning tree.

The pseudocode implementation of Kruskal's
algorithm is as follows:

procedure KRUSKAL(G):
 T = ∅
 foreach v ∈ G.V
 MAKE-SET(v)
 foreach (u,v) order weight(u,v) increasing
 if FIND-SET(u) ≠ FIND-SET(v) then
 T = T ∪ {(u, v)}
 UNION(u, v)
 return T

If implemented correctly, Kruskal's Algorithm can run
in O(E log V) time with simple data structures. In this
paper, we're going to apply Kruskal's Algorithm for
graphs with an edge for each pair of nodes. That is, 2|E|
= |V| * (|V| - 1). Thus, we can say Kruskal's Algorithm
run in O(V2 log V).

B.3. Depth-First Search[4]

Depth-First Search is an algorithm for traversing or
searching a particular vertex in graphs. The algorithm
work as follow:

1. Start at any vertices. We call the start vertices as
root.

2. From current vertex v, find all vertices adjacent
vertices S.

While not all vertices in S is processed
3. From S pick any vertex u that is not labeled as

discovered yet.
4. Recursively do this algorithm from step 2 with

current node set as u.

To illustrate the process, take a look at the following
table:

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

First we start at root node,
that is in this case node 2.
We call recursive call to
each of it's children. The
next call is node 0.

Since node 0 is not yet
flagged, we go to it then do
the same thing.

Do the same thing as
before, but this time from
node 1.

Now, when node 4 wants
to call node 2, it is already
flagged so it won't go over
there. Since there is no
more children of node 4, it
will just backtrack to 1,
and 1 will backtrack to 0.

Now zero call Depth-First
Search on it's remaining
childs. That is, node 3.

Node 6 has the same case
as node 4. It wants to call
Depth-First Search on
Node 2 but it is already
flagged. Since there's no
more children, it will
backtrack to node 3, and
then to node 0, and then to
node 2.

We're currently on the
node 5 after the call for
node 2's last child. Since
there's no more expansion
from node 5, we're
backtracking

We're back at the root node
and there's no more child
to expand. We've
completed the Depth-First
Search.

Table 2. Depth-First Search Example

The pseudocode implementation of Depth-First Search
algorithm is as follows:

procedure DFS(v):
 label v as discovered

 for all edges from v to w in v.neighbors()
 if w is not labeled as discovered then
 recursive call DFS(w)

The complexity of Depth-First Search is determined by
the purpose of the algorithm. In this paper, we'll use it as
a traversing algorithm not as searching algorithm. Thus,
the complexity of Depth-First Search is O(V).

III. VALIDATION - THE NAIVE METHOD

According to chapter II, we must satisfy the three
properties to validate a matrix. The first two properties
are trivial to be checked. We can just iterate all the
elements in O(N2). Note that we cannot have a better time
complexity than O(N2) for validation because at the very
least we need to read the matrix, which has N2 elements.

These steps are used to check if the 1st property
satisfied:

1. Iterate from 1 to N.
For each iteration on a variable i

2. Check if Mii=0. If it's true, go to the next
iteration or else we know that the matrix is not a
distance matrix.

This algorithm runs in O(N) time. Here's a pseudocode
implementation for this algorithm:

function CheckSelf(M):
 for all number from 1 to N
 if Mii≠0 then
 return false
 return true

The next step is to check if the 2nd property is satisfied.
We check for each ordered pair of vertices, and then

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

decide if the corresponding element is equal to the
corresponding element if the order of the pair is changed.
If it is not equal, then it's not a distance matrix, since the
2nd property of a distance matrix is violated. The
algorithm runs as follows:

1. Iterate for each pair of (i, j) where 1 ≤ i, j ≤ N
For each iteration on pair (i, j)

2. Check if Mij=Mji. If it's true, go to the next
iteration or else we know that the matrix is not a
distance matrix

This algorithm runs in O(N2) time. Here's the
pseudocode implementation of the algorithm.

function CheckTranspose(M):
 for all pair (i, j) where 1 ≤ i,j ≤ N
 if Mij≠Mji then
 return false
 return true

There is some problem with this solution. That is in
most computer system, this algorithm has high overhead
for having a poor cache-hit rate. Unfortunately, the only
way to have better cache-hit rate is to aggregate the
transposed matrix so Mij is right before Mij or vice versa.
That is, the lower triangle of matrix is transposed and
each element on the same row column of upper triangle
and transposed lower triangle is put adjacent. This
method is much more harder to implement with low
speed gain. Consider this approach if we need to validate
frequently. Checking the 2nd property of distance matrix
can also be done while reading although it doesn't reduce
anything but length of code.

Our last job is to determine the 3rd property is satisfied.
The naive idea to do this is to check the transitivity of the
matrix value. In latter chapter however, we will see how
to check if the 3rd property is satisfied without checking
all the transitivity pair. As for now, we should work on
how to check the transitivity in the matrix.

From the 3rd property definition, we can
spontantenously come up with the naive idea as follows:

1. Iterate for each pair of (i, j, k) where 1 ≤ i, j, k ≤
N

For each iteration on pair (i, j)
2. Check if Mik+Mkj=Mij. If it's true, go to the next

iteration or else we know that the matrix is not a
distance matrix

The algorithm above runs in O(N3) time. Here's a
pseudocode implementation for this algorithm:

function CheckTransitive(M):
 for all pair (i, j, k) where 1 ≤ i, j, k ≤ N
 if Mik+Mkj=Mij then
 return false
 return true

This algorithm suffer the same poor cache hit-rate as
with the algorithm to check if 2nd property is satisfied. To
make it worse, this algorithm has much lower cache hit-
rate because there's three tuple in it, each may be far
away from the others.

As we can see, all the algorithms above is easy to
implement. In fact, they are very similar to each other.
One thing to note is that this naive algorithm has bad
complexity and poor cache hit-rate. So in a big dataset,
this approach shouldn't even be considered. Next, we will
see how to improve the validation algorithm with some
observations and Greedy Algorithm, or to be specific, the
Kruskal's Algorithm.

IV. VALIDATION - THE IMPROVED METHOD

We have seen how to validate if a matrix is a distance
matrix of a weighted tree with little to no effort. The
naive method has already given us a correct solution for
this problem. But the problem is the naive method is very
slow, and we want computations to be fast.

From the complexities of each algorithm to check the
corresponding property, it's obvious that the 3rd property
is the slowest to be checked. The 1st and 2nd property
cannot be improved further (or maybe we can, but any
improvement on these algorithms will not give us much).
This is because the 1st and 2nd property is checked by
algorithm with complexity lower or equal to O(N2)
without calculating the overhead. Since the overhead is
constant, we will not discuss it in this paper. Thus, we
only need to be concerned on how to improve on
algorithm for checking if the 3rd property is satisfied.

To improve the algorithm, we need to observe some
facts about distance matrix. These are the following facts
needed for improving the algorithm:

1. The minimum edge must be part of the weighted
tree.

2. The k-th minimum edge must be included
unless there's already a path from each end
points of the edge.

These facts are pretty much describing a rule for
Kruskal's Algorithm. Thus the solution to the 3 rd property
checking is build a Minimum Spanning Tree from the
matrix. But the fact is given, we need to verify it by
proving it's corectness.

Suppose that, in a specific stage of Kruskal's
Algorithm, there's a forest F. Kruskal's Algorithm would
pick an edge ei which has the minimum edge on the
current set of edges E'. Let wi is the weight of edge ei.
Suppose that, instead of picking ei, we pick ej such that
wi < wj and discard wi in the process. That means the
vertices on the endpoint of edge ei will have a distance d
≥ wj on the tree we're creating and holds wi < wj ≤ d. This
is violating the 3rd rule because the d should be equal to
wi given by Mii+Mij=Mij=wi=d. Thus, by contradiction, it
is proved that the original tree must be one of the
Minimum Spanning Trees of the matrix.

But we have only proved the correctness of a
necessary conditions, it can still be a wrong tree afterall
since the Minimum Spanning Tree is only proven correct
for adjacent vertices. Fortunately, after Kruskal's
Algorithm, we already have a tree. Thus, to calculate the
distance d between vertex vi and other vertices, we can do
a Depth-First Search starting at vertex vi as the root
node. We need an additional parameter to keep track of

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

the distance from vi to the current vertex. We can do this
because the structure of a tree make sure that there's only
one path for a pair of vertice, unlike the structure of
general graph which may contains many path. If the path
contains no contradiction after we do Depth-First Search
on every vertex, then the matrices satisfy the 3rd propery
of a distance matrix.

The time needed to do computation is O(N)
+O(N2)+O(N log N)+O(N) since V=N. Thus, we can
determine if a matrix is a distance matrix of a weighted
tree with O(N log N) time.

There are other methods to check the 3rd property with
less overheads. The advantage of this algorithm over
others is we can get the tree constructed without further
algorithm. Also note that we can do this with Prim's
Algorithm instead of Kruskal's Algorithm, because what
we need is to construct the minimum spanning tree and
both them will do just fine.

V. CONCLUSIONS

Data manipulation is crucial for serving data in the
desired format. Since data comes frequently and
abundant, we need to process data faster. To do so, we
need to make a method to compute matrix faster. We can
actually validate wether or not a matrix is a distance
matrix or not. Once we know that it is a distance matrix,
we can construct the tree and use calculating method
based on trees such as Random Classifiers. One such way
to validate and construct is to use Kruskal's/Prim's
Algorithm

Apparently, there's many other alternatives such as
Sparse Table for Lesser Common Ancestor, Floyd-
Warshall Algorithm, and many others. Some advantages
of using Kruskal's/Prim's Algorithm is that we get the
constructed tree with fast enough computation time with
a single run and it's very easy to implement the
algorithm.

VII. ACKNOWLEDGMENT

I thank Allah S.W.T. for health and strength so I can
finish this paper, Mr. Rinaldi Munir and Mrs. Nur Ulfa
Maulidevi for their teaching in IF2211 course during this
semester, and also my friends and fellow students in
Informatics Institut Teknologi Bandung for their supports
and assistance.

REFERENCES

[1] Kurzweil. Ray, “The Singularity Is Near: When Humans Transcend
Biology”, London: Penguin Books, 2006.

[2] Cormen et al, “Introduction to Algorithms”, 3rd ed. Cambridge, MA:
MIT, 2009, ch.16.

[3] Cormen et al, “Introduction to Algorithms”, 3rd ed. Cambridge, MA:
MIT, 2009, ch.23.

[4] Cormen et al, “Introduction to Algorithms”, 3rd ed. Cambridge, MA:
MIT, 2009, pg. 603-612.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 5 Mei 2015

Aufar Gilbran - 13513015

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015

	I. Introduction - Why is it important?
	II. Definitions, Assumptions and Algorithms
	A. Definitions
	A.1. Weighted Trees
	A.2. Distance Matrices
	B. Algorithms
	B.1. Greedy Algorithm[2]
	B.2. Kruskal's Algorithm[3]
	B.3. Depth-First Search[4]

	III. Validation - The Naive Method
	IV. Validation - The Improved Method
	V. Conclusions
	VII. Acknowledgment
	References
	PERNYATAAN

