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Abstract—Today's  technology and bussiness  could  leave
people  10  years  in  the  past  dumbfounded.  The  high
advancement  rate  of  these  two fields  are  driven  by  new
knowledges discovered by fields in computer science. These
knowledges  helps  menial  things  that  must  be  done  by
humans  to be  automated processes.  Unfortunately,  people
cannot discovered any knowledges without any data. People
can extract  knowledges from some set of data (or dataset)
that was obtained from real events. But these dataset might
not  come  from  our  works.  They  could  be  from  other
experiments,  government,  or  statistical  surveys.  In  this
case,  the  format  of  the  dataset  might  not  come with  the
desired  format.  In  this  paper,  we're  going  to  see  how to
determine  if  a  matrix  is  a  distance  matrix  of a  weighted
tree given a distance matrix. This is useful because matrices
is very common to represent data and a weighted tree will
come in handy for data classifiers in data mining.

Index  Terms—Data  Manipulation,  Weighted  Tree,
Distance Matrix, Depth First Search

I.   INTRODUCTION - WHY IS IT IMPORTANT?

Today's  technology is very advanced compared to 10
years  ago.  We  have  smartphones,  internets,  social
medias, and other things that could leave people 10 years
in the past dumbfounded. But the interesting part is not
how we have advanced in 10 years, but how the “rate of
advancement”  has  advanced  in  10  years.  The
advancement of technology from year 2005-2015 is much
bigger  than  1995-2005.  Sure,  1995-2005  have  a  big
advancement  too  (database  technology,  object-oriented
languages). But it's not as big as 2005-2015 (Google has
automated  image  descriptor,  it  can  identify pizzas  and
other things in pictures!). Even so, the advancement from
year  1995-2005  is  still  much  bigger  than  1985-1995.
This  is  called  as  accelerating  change[1].  Accelerating
change  is  based  on  observation  that  technological
advancement is increase throughout the history. But why
is this happening? There are many factors in it, but one
of the interesting factor is the quality of data.

Data is a value or maybe a set of values that represent
a quality or quantity that is restated into individual pieces
of information. Data is commonly measured, collected, or
analyzed in an observation. There are numerous methods
of  data  collections  and  it  determines  feasibility  and
quality  of  the  data.  For  example,  you  can  measure  a
metal's temperature just by it's radiation of heat. It's easy
and cheap to do that  but the quality is very poor. As an
alternative  you can  use  a  thermometer  to  measure  the

temperature.  It  wasn't  until  1638  when  Robert  Fludd
created the first  thermometer,  so early on we could say
that using a thermometer isn't feasible solution at all. But
given  a  thermometer,  you  can  measure  a  temperature
with  a  very  good  accuracy.  With  the  advancement  of
technology, people can measure data in  better  accuracy.
Accordingly,  this  leads  to  a  better  knowledge  quality.
Sadly, even the most accurate data won't be helpful if we
cannot do easy operations in it.

Matrices is the most common way to represents data. It
provides  a  very  descriptive  information  in  human-
readable  format.  Unfortunately,  operations  in  matrices
are  very costly.  Another  thing  to  consider  is  how we
process  the  data  afterward.  One  of  the  most  common
computation methods to classification and regression of
data is Random Forests. This method utilize data in tree
format and then do computation on the tree. We want to
have  each  of  their  advantages  that  is,  it's  easier  for
humans to work on matrices and it's easier for computers
to work on trees. We can easily convert matrices to trees
if we know  that the matrices come from a tree. But what
if we don't  know where the matrices come from? Here
we're  going  to see some of the  ways to classify if  any
given matrix is a distance matrix of a weighted tree.

II.  DEFINITIONS, ASSUMPTIONS AND ALGORITHMS

Throughout  this  paper,  we will  always  assume  that
there's no data loss in matrices. That is for a matrix  M,
Mij is always have a quantifiable value. Also, since we're
validating matrices 

Throughout  this  paper,  we will  always  assume  that
there's no data loss in matrices. That is for a matrix  M,
Mij is always have a quantifiable value. Also, since we're
validating  matrices  as  distance  matrices  of  weighted
trees, we know that  M must be  a  square matrix. That is
M will always have same number of rows and columns.

As  for  variables  name  conventions,  it  will  defined
before each use. If there's no variable name definitions, N
will  correspond  to  the  number  of  rows  for  matrix  M
(which  means  it's  also the  number  of columns).  V  will
correspond  to  the  number  of vertices  in  a  graph.  The
value of  V  will  always equal  to  N,  but  it  has  different
semantics. E will correspond to the number of edges in a
graph.
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A. Definitions
This section will introduced the definitions that are 

need in order to comprehend this paper

  A.1. Weighted Trees
A tree is a graph that contains no cycle in it. Formally,

a tree is a graph G = (V, E) such that there's no subset E'
of E that could arrange a sequence of edges e'1, e'2, … ,
e'k-1, e'k   such that  e'1={u, v},  e'2={v, w}, …, e'k-1={y, z},
e'k={z, u}.  A weighted tree is a tree such that each edge
in E is given a value.

  A.2. Distance Matrices
A distance matrix is a matrix that each element of the

matrix  is  measured  by the  distance  of  vertices  in  the
corresponding  row  and  column.  Formally,  a  distance
matrix is a matrix  M such that  Mij=dist(vi,  vj) where vi  is
the vertex identified with the number  i.  This means the
following properties must hold for a matrix to come from
a weighted tree:

1. Mii=0
2. Mij=Mji

3. Mik+Mkj=Mij

These  properties  are  sufficient and  necessary
conditions for a matrix to be a distance matrix. Thus we
can based our proves from these properties (in fact we're
going to abuse it).

B. Algorithms
This section will introduce the algorithms that are 

needed in order to comprehend this paper.

  B.1. Greedy Algorithm[2]

Greedy Algorithm  is  an  algorithm  that  always make
locally optimal choice from a candidate set at each state
to achieve the global optimum. The algorithm will never
reconsiders  the  choices  made  so far  and  will  continue
until a complete solution is created. This algorithm is just
a base introduction for the next algorithm, it will not be
used in how to validate a distance matrix of a weighted
tree.

In general, greedy algorithms have five components:
1. A candidate set, from which a choice is made to 

create the solution
2. A selection function, which chooses the best 

candidate to be added to the solution
3. A feasibility function, that is used to determine 

if a candidate can be used to create the solution
4. An objective function, which assigns a value to 

a solution, or a partial solution
5. A solution function, which will indicate when 

we have discovered a complete solution

Most of the time, Greedy Algorithm will produce good
solutions for mathematical  problems.  Unfortunately,  it's
rarely produce good solutions for other type of problems.

For a Greedy Algorithm to succeed, the problem which
the  algorithm  applied  to  need  to  satisfy the  sufficient
conditions. The most common conditions is:

1. Greedy Choice Property

The choice made by a greedy may not depend on future
choices. It may depend on choices made so far. 

2. Optimal Substructure
An  optimal  solution  to  the  problem  contains  optimal
solutions to the sub-problems.

These properties is a  sufficient conditions but is not a
necessary  conditions.  There  are other  conditions which
can  determine  if the Greedy Algorithm  will  succeed or
not. But none of them is proven to be necessary condition
for the algorithm to get the desired result.

B.2. Kruskal's Algorithm[3]

Kruskal's  Algorithm  is  used to construct  a  minimum
spanning  tree given  a  general  connected  graph.  A
minimum spanning tree is a tree with minimum sum of
edges that  consists of vertices from the original  general
graph.  Formally,  given connected graph  G = (V, E) we
want to construct a graph T = (V, E') where V is the set of
vertices,  E is the set of edges, E' is subset of E and total
of the weights in E' is minimal.

Kruskal's  Algorithm  is  based  on  Greedy algorithm.
The algorithm follows these steps:

1. Create a forest  F such that each vertex is a tree
and disjoint from other vertices. A forest is a set
of trees. 

2. Create a set S as candidate set.
3. Define a selection function which pick an edge

with minimum weight in set S. 
4. Define a feasible function that  determine  if an

edge  is  appropriate  to  be  added.  An  edge  is
appropriate  if  and  only  if  it  connects  two
different tree and combines it into a single tree.

While S is not empty and F is not yet spanning 
5. Pick an edge with selection function
6. Determine  if  adding  the  edge  is  feasible  to

current solution using feasibility function.
7. If it is, add the edge to current solution and let

objective  function  add  value  to  new  current
solution.

To  better  illustrate  the  process,  take  a  look  at  the
following table:

Here we pick the minimum
edges  e  =  {1,2}  with
weight  = 2.  Since vertices
1  and  2  are  on  different
tree,  we  can  connect  and
combines them

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015



This  is  the  same with  the
last  step. An alternative is
we pick an edge e = {0, 2}.
There  can  be  many
minimum spanning trees in
a general  graph.  If we just
want  to  find  one,  we can
just pick whichever.

In this step, since vertex 0
and  2  is  already  on  the
same  tree,  it  won't  be
combined.

Pick  the  minimum  edge,
that  is  e  =  {0,  3}.  Since
vertex 3 is not on the same
as vertex 0, we can connect
it and then combines it into
a single tree.

This  is  the  same with  the
last step.

The remaining edges won't
be used since we already 
got our spanning tree.

Table 1. Kruskal's Algorithm Example
We can  prove  the  correctness  of  this  algorithm  by

proving the algorithm will produce spanning tree and by
proving the algorithm will produce minimum total edges
weight.

Let  T  is  the  result  of this  algorithm  from connected
graph G. T cannot have a cycle since feasible function in
step 4 prevents it do so.  T cannot be disconnected since
he first encountered edge that joins two components of  T
would  have  been  added  by the  algorithm.  Thus  T  is
spanning tree.

The  pseudocode  implementation  of  Kruskal's
algorithm is as follows:

procedure KRUSKAL(G):
  T = ∅
  foreach v ∈ G.V
     MAKE-SET(v)
  foreach (u,v) order weight(u,v) increasing
    if FIND-SET(u) ≠ FIND-SET(v) then
      T = T ∪ {(u, v)}
      UNION(u, v)
  return T

If implemented correctly, Kruskal's Algorithm can run
in  O(E log V)  time with simple data  structures.  In  this
paper,  we're  going  to  apply  Kruskal's  Algorithm  for
graphs with an edge for each pair of nodes. That is, 2|E|
= |V| * (|V| - 1).  Thus, we can say Kruskal's Algorithm
run in O(V2 log V).

B.3. Depth-First Search[4]

Depth-First  Search  is an  algorithm  for  traversing  or
searching  a  particular  vertex  in  graphs.  The algorithm
work as follow:

1. Start at any vertices. We call the start vertices as
root.

2. From current vertex v, find all vertices adjacent
vertices S.

While not all vertices in S is processed
3. From S pick any vertex  u that is not labeled as

discovered yet.
4. Recursively do this algorithm from step 2 with

current node set as u.

To illustrate the process, take a look at the following
table:
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First we start at root node,
that  is in this case node 2.
We  call  recursive  call  to
each  of  it's  children.  The
next call is node 0.

Since  node  0  is  not  yet
flagged, we go to it then do
the same thing.

Do  the  same  thing  as
before,  but  this  time from
node 1.

Now,  when  node  4  wants
to call node 2, it is already
flagged so it won't go over
there.  Since  there  is  no
more children of node 4, it
will  just  backtrack  to  1,
and 1 will backtrack to 0.

Now zero  call  Depth-First
Search  on  it's  remaining
childs. That is, node 3.

Node 6 has  the same case
as node 4. It  wants to call
Depth-First  Search  on
Node  2  but  it  is  already
flagged.  Since  there's  no
more  children,  it  will
backtrack  to  node  3,  and
then to node 0, and then to
node 2.

We're  currently  on  the
node  5  after  the  call  for
node  2's  last  child.  Since
there's  no  more  expansion
from  node  5,  we're
backtracking

We're back at the root node
and  there's  no  more  child
to  expand.  We've
completed  the  Depth-First
Search.

Table 2. Depth-First Search Example

The pseudocode implementation of Depth-First Search
algorithm is as follows:

procedure DFS(v):
  label v as discovered

      for all edges from v to w in v.neighbors()
      if w is not labeled as discovered then
        recursive call DFS(w)

The complexity of Depth-First Search is determined by
the purpose of the algorithm. In this paper, we'll use it as
a traversing algorithm not as searching algorithm. Thus,
the complexity of Depth-First Search is O(V).

III.   VALIDATION - THE NAIVE METHOD

According  to  chapter  II,  we  must  satisfy the  three
properties to validate a matrix.  The first two properties
are  trivial  to  be  checked.  We can  just  iterate  all  the
elements in O(N2). Note that we cannot have a better time
complexity than  O(N2) for validation because at the very
least we need to read the matrix, which has N2 elements. 

These  steps  are  used  to  check  if  the  1st property
satisfied:

1. Iterate from 1 to N.
For each iteration on a variable i

2. Check  if  Mii=0. If  it's  true,  go  to  the  next
iteration or else we know that the matrix is not a
distance matrix.

This algorithm runs in O(N) time. Here's a pseudocode
implementation for this algorithm:

function CheckSelf(M):
  for all number from 1 to N
    if Mii≠0 then
      return false
    return true

The next step is to check if the 2nd property is satisfied.
We check  for  each  ordered  pair  of  vertices,  and  then
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decide  if  the  corresponding  element  is  equal  to  the
corresponding element if the order of the pair is changed.
If it is not equal, then it's not a distance matrix, since the
2nd property  of  a  distance  matrix  is  violated.  The
algorithm runs as follows:

1. Iterate for each pair of (i, j) where 1 ≤ i, j ≤ N
For each iteration on pair (i, j)

2. Check  if  Mij=Mji.  If  it's  true,  go  to  the  next
iteration or else we know that the matrix is not a
distance matrix

This  algorithm  runs  in  O(N2)  time.  Here's  the
pseudocode implementation of the algorithm.

function CheckTranspose(M):
  for all pair (i, j) where 1 ≤ i,j ≤ N
    if Mij≠Mji then
      return false
  return true

There is some problem with this  solution.  That  is in
most computer system, this algorithm has high overhead
for having a poor cache-hit rate. Unfortunately, the only
way to  have  better  cache-hit  rate  is  to  aggregate  the
transposed matrix so Mij is right before Mij or vice versa.
That  is,  the  lower triangle  of matrix  is transposed and
each element on the same row column of upper triangle
and  transposed  lower  triangle  is  put  adjacent.  This
method  is  much  more  harder  to  implement  with  low
speed gain. Consider this approach if we need to validate
frequently. Checking the 2nd property of distance matrix
can also be done while reading although it doesn't reduce
anything but length of code.

Our last job is to determine the 3rd property is satisfied.
The naive idea to do this is to check the transitivity of the
matrix value. In latter chapter however, we will see how
to check if the 3rd property is satisfied without checking
all  the transitivity pair.  As for now, we should work on
how to check the transitivity in the matrix.

From  the  3rd property  definition,  we  can
spontantenously come up with the naive idea as follows:

1. Iterate for each pair of (i, j, k) where 1 ≤ i, j, k ≤
N

For each iteration on pair (i, j)
2. Check if Mik+Mkj=Mij. If it's true, go to the next

iteration or else we know that the matrix is not a
distance matrix

The  algorithm  above  runs  in  O(N3)  time.  Here's  a
pseudocode implementation for this algorithm:

function CheckTransitive(M):
  for all pair (i, j, k) where 1 ≤ i, j, k ≤ N
    if Mik+Mkj=Mij then
      return false
  return true

This algorithm suffer the same poor cache hit-rate as
with the algorithm to check if 2nd property is satisfied. To
make it worse, this algorithm has much lower cache hit-
rate  because there's  three  tuple  in  it,  each  may be far
away from the others. 

As  we can  see,  all  the  algorithms  above is  easy to
implement.  In  fact,  they are very similar  to each other.
One thing  to note is that  this  naive algorithm  has  bad
complexity and poor cache hit-rate. So in a big dataset,
this approach shouldn't even be considered. Next, we will
see how to improve the validation algorithm with some
observations and Greedy Algorithm, or to be specific, the
Kruskal's Algorithm.

IV.   VALIDATION - THE IMPROVED METHOD

We have seen how to validate if a matrix is a distance
matrix  of a  weighted  tree  with  little  to  no  effort.  The
naive method has already given us a correct solution for
this problem. But the problem is the naive method is very
slow, and we want computations to be fast.

From the complexities of each algorithm to check the
corresponding property, it's obvious that the 3rd property
is  the  slowest  to  be checked.  The  1st and  2nd property
cannot  be improved further  (or  maybe we can,  but any
improvement on these algorithms will not give us much).
This  is  because  the  1st and  2nd property is  checked by
algorithm  with  complexity  lower  or  equal  to  O(N2)
without calculating the overhead. Since the overhead is
constant,  we will  not  discuss it  in  this paper.  Thus,  we
only  need  to  be  concerned  on  how  to  improve  on
algorithm for checking if the 3rd property is satisfied.

To improve the  algorithm,  we need  to observe some
facts about distance matrix. These are the following facts
needed for improving the algorithm:

1. The minimum edge must be part of the weighted
tree.

2. The  k-th  minimum  edge  must  be  included
unless  there's  already  a  path  from  each  end
points of the edge.

These  facts  are  pretty  much  describing  a  rule  for
Kruskal's Algorithm. Thus the solution to the 3 rd property
checking  is  build  a  Minimum  Spanning  Tree  from the
matrix.  But the  fact  is  given,  we need  to  verify it  by
proving it's corectness.

Suppose  that,  in  a  specific  stage  of  Kruskal's
Algorithm, there's a forest F. Kruskal's Algorithm would
pick  an  edge  ei which  has  the  minimum  edge  on  the
current  set of edges  E'.  Let  wi  is the weight  of edge  ei.
Suppose that,  instead of picking  ei,  we pick  ej such that
wi < wj  and  discard  wi in  the  process.  That  means  the
vertices on the endpoint of edge ei will have a distance d
≥ wj on the tree we're creating and holds wi < wj ≤ d. This
is violating the 3rd rule because the  d should be equal to
wi given by Mii+Mij=Mij=wi=d. Thus, by contradiction, it
is  proved  that  the  original  tree  must  be  one  of  the
Minimum Spanning Trees of the matrix.

But  we  have  only  proved  the  correctness  of  a
necessary conditions, it can still be a wrong tree afterall
since the Minimum Spanning Tree is only proven correct
for  adjacent  vertices.  Fortunately,  after  Kruskal's
Algorithm, we already have a tree. Thus, to calculate the
distance d between vertex vi and other vertices, we can do
a  Depth-First  Search  starting  at  vertex  vi  as  the  root
node. We need an additional parameter to keep track of
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the distance from vi  to the current vertex. We can do this
because the structure of a tree make sure that there's only
one  path  for  a  pair  of  vertice,  unlike  the  structure  of
general graph which may contains many path. If the path
contains no contradiction after we do Depth-First Search
on every vertex, then the matrices satisfy the 3rd propery
of a distance matrix.

The  time  needed  to  do  computation  is  O(N)
+O(N2)+O(N  log  N)+O(N) since  V=N.  Thus,  we  can
determine if a matrix is a distance matrix of a weighted
tree with O(N log N) time.

There are other methods to check the 3rd property with
less  overheads.  The  advantage  of  this  algorithm  over
others is we can get the tree constructed without further
algorithm.  Also  note  that  we can  do  this  with  Prim's
Algorithm instead of Kruskal's Algorithm, because what
we need is to construct the  minimum spanning tree and
both them will do just fine.

V.   CONCLUSIONS

Data  manipulation  is  crucial  for  serving  data  in  the
desired  format.  Since  data  comes  frequently  and
abundant,  we need to process data  faster.  To do so, we
need to make a method to compute matrix faster. We can
actually  validate  wether  or  not  a  matrix  is  a  distance
matrix or not. Once we know that it is a distance matrix,
we can  construct  the  tree  and  use  calculating  method
based on trees such as Random Classifiers. One such way
to  validate  and  construct  is  to  use  Kruskal's/Prim's
Algorithm

Apparently,  there's  many  other  alternatives  such  as
Sparse  Table  for  Lesser  Common  Ancestor,  Floyd-
Warshall Algorithm,  and many others.  Some advantages
of using  Kruskal's/Prim's  Algorithm  is  that  we get  the
constructed tree with fast enough computation time with
a  single  run  and  it's  very  easy  to  implement  the
algorithm. 
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