
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

KenKen Puzzle Solver using Backtracking Algorithm 
 

Asanilta Fahda 13513079  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  

asanilta@students.itb.ac.id 
 

 

 

KenKen, also known as Mathdoku or Calcudoku, is a 

number puzzle game that requires a combination of basic 

arithmetic skills and logic to solve. It can be considered a 

more challenging variation of Sudoku or Kakuro. Each row 

and column of the grid must not contain the same digit, and 

each cage within the grid must fulfill its target number using 

the given type of operation (addition, subtraction, 

multiplication, or division).  This paper presents an algorithm 

which can solve KenKen puzzles (tested up to 8×8 in size) 

using backtracking. 

 

Keywords—puzzle, kenken, mathdoku, solver, 

backtracking 

 

 

I.   INTRODUCTION TO KENKEN 

A. Gameplay 

KenKen, presently also known as Mathdoku or 

Calculdoku, was created in 2004 by a Japanese teacher 

named Tetsuya Miyamoto to fulfill his goal of training the 

math and logic skills of his students in a fun way. This 

brainteaser game quickly spread throughout Japan and the 

United States, replacing crossword puzzles in many 

newspapers. It then turned into a worldwide sensation 

after the appearance of online and mobile versions, 

especially appealing to lovers of number games such as 

Sudoku and Kakuro.[1] 

In the game, the player is given a grid of size n × n, 

with n commonly being an integer from 4 to 9. This grid 

must then be filled with the digits 1 through n in such a 

way that each row contains exactly one of each digit, each 

column contains exactly one of each digit, and each cage 

(a group of cells with a bold outline containing a target 

number and an operator) must fulfill the target result when 

the digits inside the cage are combined with the given 

operator. There are five different possible operators: 

1. +, an n-nary operator indicating addition 

2. -, a binary operator indicating subtraction 

3. ×, an n-nary operator indicating multiplication 

4. ÷, a binary operator indicating division 

5. = (symbol usually omitted), a unary operator 

indicating equality 

In some variations of the game, only the target number 

is given, and the player must guess the operators of each 

cage to solve the puzzle. 

 
Fig 1.1. Example of an unsolved KenKen game [2] 

 

B. Techniques and Strategies 

In order to solve a KenKen puzzle, the player must 

first figure out two major problems: which numbers to put 

in a cage, and which order to put them in. 

Like most other number games, the easiest manner to 

solve the puzzle is by means of elimination plus trial and 

error. The obvious start would be to find cages with only 

one square, because they do not produce any question of 

“which number” nor “which order”. For example, in the 

puzzle from Fig 1.1, the square at the left top corner and 

the one at the right bottom corner can be instantly filled in 

with their respective target number. We can then continue 

to find cages with only one possible combination of 

numbers (thus solving our “which numbers” problem), 

such as the cage in the top right corner with the rule 

stating “3-“. It can be easily concluded that the only pair 

of numbers from the set {1, 2, 3, 4} that will produce a 

result of 3 when one number is subtracted from the other 

is {1, 4}. Now, we can move on to the question of order. 

In this case, we are lucky because the right bottom corner 

has already been filled with the number 1, so any number 

in the same column cannot also be 1. Therefore, by 

elimination, we know that the top right corner must be 4 

and the square on the left of it is 1. This, in turn, gives us 

the solution to the second square from the left in the top 

row, i.e. 2, because it is the only number not yet present in 

the entire row. We continue this process until all the cells 

in the grid are filled and produce a solution such as given 

below. 

 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

 
Fig 1.2. Solution for the KenKen game given in Fig 1.1 [2] 

 

However, as the difficulty level progresses, the next 

move does not always appear so conspicuously. At times, 

the player is forced to make a guess and then later see 

whether or not the move ends up leading to a solution. If 

not, the player will have to “backtrack” and start over 

from the point of uncertainty. 

 

II.  THEORY OF BACKTRACKING ALGORITHM 

Backtracking is a general algorithm which finds a 

solution by trying one of several choices; if the choice 

proves incorrect, the computation restarts at the point of 

choice and tries another choice. [2] In order to “trace back 

our steps”, it is necessary that we either: 1. explicitly keep 

track of all the steps taken, or 2. use recursion. The latter 

is used because it is by far easier, which is why 

backtracking is almost always DFS-based.[3] 

The backtracking algorithm was first introduced by 

D.H. Lehmer in 1950 as an improvement to the brute-

force algorithm. It was then developed further by R.J. 

Walker, Golomb, and Baumert. The algorithm proved to 

be effective for solving many logic games (e.g. tic-tac-toe, 

maze, chess, etc.) because it is notably useful for solving 

constraint satisfaction problems, in which a set of objects 

must satisfy a number of constraints or limitations. 

The implementation of backtracking has the following 

common properties: 

1. Solution space 

The solution of the problem is stated as a vector 

with n-tuple: 

 

X = (x1, x2, ..., xn), xi  Si 

 

where it is possible that 

 

S1 = S2 = ... = Sn 

 

2. Generating function of xk 

The generating function of xk is stated as 

 

T(k) 

 

where T(k) generates the values of xk, which are the 

components of the solution vector. 

3. Bounding function 

The bounding function is stated as 

 

B(x1, x2, ..., xk) 

 

in which B is true if (x1, x2, ..., xk) leads to the 

solution. 

If B is true, the values of xk+1 continue on being 

generated, otherwise (x1, x2, ..., xk) is discarded. 

 

 
Fig 2.1. Illustration of state space tree used in backtracking 

algorithm [3] 

 

The solution space for backtracking is organized in a 

tree structure, where each node represents the state of the 

problem and an edge is labeled as xi. The path from the 

root to leaf represents a possible solution, and all the paths 

collected together form the solution space. This tree 

structure is called a state space tree. 

The steps to using a state space tree for finding the 

solution are as following: 

1. The solution is searched by building a path from 

the root to a leaf using depth-first order (DFS) 

2. The nodes that are created are called live nodes 

3. The nodes that are currently being expanded are 

called expand-nodes or E-nodes 

4. Each time an E-node is being expanded, the path it 

is building becomes longer 

5. If the path currently being built does not lead to the 

solution, the E-node is “killed” and becomes a 

dead node 

6. The function used to kill off E-nodes is an 

implementation of the bounding function 

7. Dead nodes will not be expanded 

8. If the path being built ends with a dead node, the 

process backtracks to the node before it 

9. It then continues to generate other child nodes, 

which in turn becomes the new E-nodes 

10. The search ends when the goal node is achieved 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

 

Each node in the state space tree is associated with a 

recursive call. If the number of nodes in the tree is 2
n
 or 

n!, then the worst case for the backtracking algorithm is a 

time complexity of O(p(n)2
n
 or O(q(n)n!), with p(n) and 

q(n) as n-degree polynomials stating the computation time 

of each node. 
 

III.   IMPLEMENTATION OF BACKTRACKING 

ALGORITHM IN KENKEN SOLVER 

A. Common Properties 
1. Solution space 

The solution space of a KenKen puzzle of 

size n × n is: 

X = (x1, x2, ..., xm), xi {1, 2, ..., n} 

with m = n
2
  

2. Generating function 

The generating function generates an integer 

sequentially from 1 to n as xk 

3. Bounding function 

The bounding function combines three 

different constraint checking functions: 

- Column checking 

This function returns true if xk is not yet 

present in the column or false otherwise 

- Row checking 

This function returns true if xk is not yet 

present in the row or false otherwise 

- Grid checking 

This function checks the operator of the 

grid and performs a check accordingly: 

Operator Function 

+ returns true if the sum of all 

the values present in the 

grid plus xk  is less than or 

equal to the target value; 

returns false otherwise 

 

- returns true if either both 

cells in the grid are empty or 

if there is one empty cell 

and the result of xk 

subtracted by the value in 

the other cell, or vice versa, 

equals the target value; 

returns false 

× returns true if the 

multiplication result of all 

the values present in the 

grid times xk  is less than or 

equal to the target value; 

returns false otherwise 

÷ returns true if either both 

cells in the grid are empty or 

if there is one empty cell 

and the result of xk divided 

by the value in the other 

cell, or vice versa, equals 

the target value; 

returns false otherwise 

= returns true if xk equals the 

target value; 

returns false otherwise 
Table 1. Grid checking 

 

B. State Space Tree 
To illustrate the building of a dynamic state space tree 

during the process of solving a KenKen puzzle, we will 

use this following example of a 3×3 grid. 

 

 
Fig 3.1. Example of a 3×3 KenKen puzzle 

[1] 

 

We start by building state 1 which represents an empty 

grid. The generating function will then firstly generate the 

number 1 as x1, meaning that it is placed in the first empty 

cell (state 2). The bounding function will check if this is a 

valid move, which it is. For the next empty cell, the 

number 1 is once again generated (state 3). However, it 

fails the row check in the bounding function and therefore 

becomes a dead node. We then try with number 2 (state 

4), which fails the grid check in the bounding function 

because it does not equal the target value, i.e. 1. Number 3 

(state 5) suffers the same fate. 

 

 
Fig 3.2 Illustration of state 3, 4, and 5 on a KenKen grid 

 

Since there are no possible solutions this way, we 

backtrack to state number 1 and generate a new number as 

x1. Number 2 is valid as x1 (state 6) and hence we can 

continue to x2. We try number 1 (state 7) and it satisfies 

the bounding function, meaning we can now continue to 

x3. Both 1 (state 8) and 2 (state 9) fail the row check 

which means that we are left with number 3 (state 10). 

Because state 10 is valid, we can then create a new state 

with number 1 placed in the first column in the second 

row in the grid (state 11). This happens to fulfill the 

bounding check already, so we can continue to the cell 

beside it. Using number 1 (state 12) obviously doesn’t 

work because it fails both the column check and the row 

check. Number 2 (state 13) seems to work, but none of its 

children (state 14, 15, 16) do so well afterwards (1 and 2 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

fail the row check while 3 fails the column check). We 

backtrack once again to state 11 and create a new state 

(state 17). Number 3 fits just fine as x5, so we try number 1 

(state 18) as x6, which fails the row check, and continue 

with number 2 (state 19). This produces an almost-

finished result. 

 

 
Fig 3.3 Illustration of state 19 on a KenKen grid 

 

The last row can be deduced in a similar manner, and 

the result is achieved in state 25, as can be seen in the tree 

structure below. 

 
Fig 3.2. The state space tree built in the process of solving the 

puzzle in Fig 3.1. 

 

The space tree above has reached its goal node, state 

25, with a path of 2-1-3-1-3-2-3-2-1. 

 

 
Fig 3.1. State 25 (the goal node) as the achieved result 

 

The height of a tree built to solve a puzzle of size n × 

n should end up being of height n
2
+1 once it reaches its 

goal node, with the path from the root node to the goal 

node representing all of the numbers used to fill in the 

grid from the top left cell to the bottom right cell. 

 

C. Pseudocode of Implementation 
The basic steps of the implementation can be 

described like this: 

1. Find the first/next empty cell in the grid 

2. Place a number starting from 1 to N in the cell until 

a valid number is found or until the number has 

exceeded N 

3. If the number for the cell is valid, repeat step 1 and 

2 

4. If the number has exceeded N and no number from 

1 to N is valid for the cell, backtrack to the 

previous cell and try the next possible valid 

number for that cell 

5. If there are no more empty cells, the solution has 

been found 

The solver is implemented as a class named 

KenKenSolver with the following methods and attributes: 

 
Pseudocode 1. KenKenSolver class 

The initialize procedure is used to read an input 

with the following format: 

class KenKenSolver 

 

ATTRIBUTES 

 class location 

  x: int 

  y: int 

 

 class cage 

  goal: int 

  opr: char 

  squares: list of location 

 

 N: int 

 NCage: int 

 Board: array[1..N][1..N] of int 

 CageBoard: array[1..N][1..N] of int 

 Cages: array [1..NCage] of cage 

 

METHODS 

 initialize() 

 readCageRules() 

 printResult() 

 solve(): boolean 

 isValid(int, int, int): boolean 

 checkRow(int, int): boolean 

 checkCol(int, int): boolean 

 checkCage(int, int): boolean 

1 

2 6 

3 4 5 

7 

8 9 10 

11 

12 13 17 

14 15 16 18 19 

1 

1 

1 

1 

1 

1 1 

2 

2 

2 

2 

2 2 

1 

3 

3 

3 

3 

22 21 

23 24 

25 

20 

1 

1 

1 

2 

2 3 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

 
The first two integers on the top row indicate the size 

of the grid (N) and the number of cages (NCage) 

respectively. The following N rows (and N columns) 

indicate the cage numbers of each cell. The cage number 

for each cell is saved in the CageBoard matrix, and the 

locations for each cage number are added to the list of the 

corresponding cage number in the Cages array. The rules 

for each cage are given in the last row and are saved in the 

Cages array. 

 

 
Pseudocode 2. initialize procedure 

 

The bounding function is given by the isValid 

function, which in turn calls checkRow, 

checkColumn, and checkGrid. 

 

 
Pseudocode 3. isValid function 

 

 
Pseudocode 4. checkRow function 

 

 
Pseudocode 5. checkCol function 

 

 
Pseudocode 6. checkGrid function 

 

function checkGrid(input c: int, input num: 

int) -> boolean 

 

KAMUS LOKAL 

total: int 

 

ALGORITMA 

if (Cages[c].opr==‟+‟) 

  total = num 

  for each loc in Cages[c].squares 

   total += Board[loc.x][loc.y] 

  if (total <= Cages[c].goal) 

   -> true 

 else if (Cages[c].opr==‟-„) 

  loc1 = Cages[c].squares[0] 

  loc2 = Cages[c].squares[1] 

  num1 = Board[loc1.x][loc1.y] 

  num2 = Board[loc2.x][loc2.y] 

  if (num1==0) 

   if (num2==0) 

    -> true 

   else if(num2-num==Cages[c].goal) 

    -> true 

   else if(num-num2==Cages[c].goal) 

    -> true 

  else if (num1-num==Cages[c].goal) 

   -> true 

  else if (num-num1==Cages[c].goal) 

   -> true 

 else if (Cages[c].opr==‟x‟) 

  total = num 

  for each loc in Cages[c].squares 

   total *= Board[loc.x][loc.y] 

  if (total <= Cages[c].goal) 

   -> true 

 else if (Cages[c].opr==‟/‟) 

  loc1 = Cages[c].squares[0] 

  loc2 = Cages[c].squares[1] 

  num1 = Board[loc1.x][loc1.y] 

  num2 = Board[loc2.x][loc2.y] 

  if (num1==0) 

   if (num2==0) 

    -> true 

   else if(num2/num==Cages[c].goal) 

    -> true 

   else if(num/num2==Cages[c].goal) 

    -> true 

  else if (num1/num==Cages[c].goal) 

   -> true 

  else if (num/num1==Cages[c].goal) 

   -> true 

 else if (Cages[c].opr==‟=‟) 

  if (num==Cages[c].goal) 

   -> true 

  

-> false 

 

function checkCol(input col: int, input 

num: int) -> boolean 

 

KAMUS LOKAL 

row: int 

 

ALGORITMA 

 row traversal [1..N] 

  if (Board[row][col]==num) 

   -> false 

 

 -> true 

 

 

function checkRow(input row: int, input 

num: int) -> boolean 

 

KAMUS LOKAL 

col: int 

 

ALGORITMA 

 col traversal [1..N] 

  if (Board[row][col]==num) 

   -> false 

 

 -> true 

 

function isValid(input row: int, input 

col: int, input num: int) -> boolean 

 

ALGORITMA 

 -> (checkRow(row,num) and 

checkCol(col,num) and 

checkGrid(CageBoard[row][col],num)) 

initialize()  

 

KAMUS LOKAL 

i: int 

j: int 

x: int 

 

ALGORITMA 

 input(N) 

 input(NCages) 

 i traversal [1..N] 

  j traversal [1..N] 

   input(x) 

   Board[i][j] = 0 

   CageBoard[i][j] = x 

   location cell(i,j) 

   Cages[x].squares.add(cell) 

 

 readCageRules() 

   

   

3 5 

1 2 3 

1 3 3 

4 5 5 

3+ 1= 8+ 3= 3+ 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

To check for the next empty square to fill (also to 

check if there are no more empty squares, meaning the 

puzzle is solved), we have a function called 
findEmpty. 

 

 
Pseudocode 7. findEmpty function 

 

The functions given above are used in the function 

solve, which is a recursive function that returns true if 

the current state is the solution, or if the current state can 

be expanded to achieve the solution. 

 

 
Pseudocode 8. solve function 

 

Finally, we can run the program with a simple driver: 

 
Pseudocode 9. Program driver 

 

 

 

 

 

 

 

 

 

 

 

 

IV.   RESULTS AND PERFORMANCE 

 

a. 4×4 grid 

 

Input: 

 
 
Output: 

 
 
Time: 68 ms 

 
b. 5×5 grid 

 

Input: 

 
 

Output: 

 
 

Time: 96ms 

 

c. 6×6 grid 

 

Input: 

 
 

Output: 

5 3 2 1 4  

4 1 5 2 3  

2 5 4 3 1  

3 2 1 4 5  

1 4 3 5 2 

5 11 

1 1 2 2 3 

4 5 5 3 3 

4 6 7 7 8 

4 6 9 7 8 

10 10 9 9 11 

2- 2/ 9+ 24x 4- 2/ 48x 4- 75x 3- 

2= 

4 2 3 1  

3 4 1 2  

1 3 2 4  

2 1 4 3 

4 9 

1 2 3 3 

1 4 4 5 

6 7 7 5 

8 8 9 9 

7+ 2= 2- 3- 2/ 1= 6x 3+ 7+ 

6 16 

1 2 3 4 4 5 

6 2 3 4 7 5 

6 2 8 8 7 7 

6 9 9 10 11 11 

12 9 13 13 14 14 

12 15 13 16 16 14 

1= 11+ 11+ 12+ 3+ 11+ 10+ 6+ 10+ 

6= 1- 3- 8+ 13+ 1= 7+ 

main() 

 K: KenKenSolver 

 K.initialize() 

 if (K.solve()) 

  K.printGrid() 

 else 

  output(“Oops!”) 

function findEmpty() -> location 

 

KAMUS LOKAL 

i: integer 

j: integer 

 

ALGORITMA 

 i traversal [1..N] 

  j traversal [1..N] 

   if (Board[i][j]==0) 

    -> (i,j) 

 

 -> null 

function solve() -> boolean 

 

KAMUS LOKAL 

empty: location 

 

ALGORITMA 

empty = findEmpty() 

   if (empty != null) 

    i traversal [1..N] 

       if isValid(empty.x,empty.y,i) 

        Board[empty.x][empty.y]=i 

          if (solve()) 

           -> true             

         Board[empty.x][empty.y]=0 

       

-> false 

   else 

-> true 



Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2014/2015 

 

 
 
Time: 171 ms 

 

d. 7×7 grid 

 

Input: 

 
 

Output: 

 
 

Time: 823 ms 

 

e. 8×8 grid 

 

Input: 

 
 

Output: 

 
 

Time: 100314 ms 

V.   ANALYSIS AND CONCLUSION 

In conclusion, backtracking is a versatile algorithm 

which can be used for solving many types of puzzle 

games, including KenKen, in a systematic and structured 

manner. The algorithm can compute the solution for small 

to medium-sized KenKen puzzles (up to 7×7 grid size) 

quickly within seconds. However, as the size increases, 

the execution time also experiences a great difference. 

8×8 grids vary to a great extent in time depending on the 

puzzle itself (between ~1.5 minutes to ~20 minutes). This 

can be improved by implementing better heuristics that 

can eliminate more choices or by using a different type of 

algorithm altogether.  

 

 

REFERENCES 

[1] KenKen Puzzle Official Site. http://www.kenkenpuzzle.com/ 

[Accessed: May 4th, 2015] 

[2] Davis, Tom. “Kenken for Teachers”.  

http://mathcircle.berkeley.edu/archivedocs/2009_2010/lectures/09

10lecturespdf/kenken_tom_davis.pdf [Accessed: May 4th, 2015] 

[3] Munir, Rinaldi. Diktat Kuliah IF2211 Strategi Algoritma. 

Bandung: Teknik Informatika Institut Teknologi Bandung, 2009. 

[4] GeeksforGeeks “Backtracking | Set 7 (Sudoku)”. 

http://www.geeksforgeeks.org/backtracking-set-7-suduku/ 

[Accessed: May 3rd, 2015] 

 

 

 

STATEMENT 

I hereby declare that this paper is my own work and not a 

copy, translation, nor plagiarism of somebody else’s work. 

 

Bandung, May 5
th

 2015 

 
Asanilta Fahda 13513079 

 

1 2 6 3 5 4 7 8  

5 3 7 6 8 1 4 2  

2 4 1 7 3 8 5 6  

3 8 5 2 6 7 1 4  

6 7 4 5 2 3 8 1  

8 1 2 4 7 6 3 5  

4 5 3 8 1 2 6 7  

7 6 8 1 4 5 2 3 

8 26 

1 2 2 3 4 4 5 5 

1 6 6 7 8 9 5 5 

10 10 6 7 7 9 9 11 

12 13 14 14 15 16 11 11 

12 13 17 17 15 16 18 18 

19 19 20 21 21 22 22 18 

23 20 20 21 22 22 24 24 

23 25 25 21 26 26 24 24 

7+ 7- 4= 2/ 630x 14+ 2x 7= 72x 

15+ 60x 3/ 2- 2- 3- 1- 1- 14+ 35x 

330x 19+ 224x 24x 18+ 3/ 11+ 

2 1 6 4 3 7 5  

4 5 3 1 7 6 2  

7 6 4 5 1 2 3  

1 2 7 6 5 3 4  

3 4 1 2 6 5 7  

5 3 2 7 4 1 6  

6 7 5 3 2 4 1 

7 22 

1 2 2 3 4 4 5 

1 6 6 3 7 8 5 

9 6 10 10 7 8 8 

9 11 12 12 13 14 14 

11 11 15 12 13 16 16 

17 18 18 19 19 16 20 

17 17 21 21 22 22 22 

2- 13+ 3- 6x 2/ 14+ 6- 150x 6- 1- 

10+ 36x 1- 1- 1= 16+ 24x 8+ 3- 6= 

35x 8+ 

1 3 6 5 4 2  

4 2 5 3 6 1  

5 6 2 4 1 3  

2 5 1 6 3 4  

6 4 3 1 2 5  

3 1 4 2 5 6 

http://www.kenkenpuzzle.com/
http://mathcircle.berkeley.edu/archivedocs/2009_2010/lectures/0910lecturespdf/kenken_tom_davis.pdf
http://mathcircle.berkeley.edu/archivedocs/2009_2010/lectures/0910lecturespdf/kenken_tom_davis.pdf
http://www.geeksforgeeks.org/backtracking-set-7-suduku/

