
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014 1

Editing Common Mistake in Paragraph or Text Using

 IF2211 Strategi Algoritma

Isabella Julia Putri 1351103

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511033@std.stei.itb.ac.id

 isabella.julia@s.itb.ac.id

Abstract—People writes and they do common mistakes on

writing. The common mistakes in writing actually can be

detect and by string matching. If we identify the character of

common mistakes, and make a formula of it, it will be easier

to find the mistakes using string matching. This will help

people especially students to edit their own writing.

Index Terms—Editing, Paragraph, String Matching,

Common Mistake

I. INTRODUCTION

Writing is an activity we learn since we were children.

But, after some years we learn about writing, there is still

common mistakes we made when we write, especially

writing articles or paper. Common mistakes like spelling

mistakes, puctuation mistakes and grammar mistakes still

often found in paragraph we write.

Those mistakes are hard to find if we don’t use program

or software to help us detect our mistakes such as

compiler which detect mistakes in code we made.

To detect common mistakes in writing, we can use

string matching algorithm. Those mistakes has their own

pattern, and string matching will help us find if there is

our sentence match with the mistakes pattern.

II. BASE THEORY

A. String Matching

There are many kinds of algorithm which is used for

string matching. Two of them are Knuth Morris Praat and

Boyer Moore.

2.1 KNUTH-MORRIS-PRATT

Knuth –Morris Pratt Algorithm is an algorithm which is

developed by D.E.Knuth, J.H.Morris and V.R.Pratt. This

algorithm used as a substitute of Bruteforce Algorithm on

string matching process. In Bruteforce algorithm, every

time it didn’t match with the text, the pattern will be move

to the right one character. It is different from Brute Force,

the information used still kept to make some movement.

The algorithm uses that information to make a farther

movement, not only one character. The comparison

between brute force and KMP algorithm shown in the

movement of the pattern based on the text position. Which

in string matching, this begin in the left side of text.

Complexity of string matching algorithm is count from

sum of the comparison operation which is done. The best

time complexity form brute force is O(n). This best case

happens if the comparison operation, every letter in

pattern compared with the beginning text is same. And the

worst time complexity from brute force is O(mn).

If we compare KMP with brute force algorithm, KMP’s

algorithm complexity is O(m+n). KMP algorithm does the

beginning process to the pattern by counting the side

function. This Side function can avoid unused movement,

which usually done by brute force algorithm. Side

function only depends on the character in the pattern, and

don’t depend on the character in text.

Recall that we defined the overlap of two strings x and

y to be the longest word that's a suffix of x and a prefix of

y. The missing component of the KMP algorithm is a

computation of this overlap function: we need to know

overlap(P[0..j-1],P) for each value of j>0. Once we've

computed these values we can store them in an array and

look them up when we need them.

To compute these overlap functions, we need to know

for strings x and y not just the longest word that's a suffix

of x and a prefix of y, but all such words. The key fact to

notice here is that if w is a suffix of x and a prefix of y,

and it's not the longest such word, then it's also a suffix of

overlap(x,y). (This follows simply from the fact that it's a

suffix of x that is shorter than overlap(x,y) itself.) So we

can list all words that are suffixes of x and prefixes of y by

the following loop:

 while (x != empty) {

 x = overlap(x,y);

 output x;

 }

mailto:13511033@std.stei.itb.ac.id
mailto:isabella.julia@s.itb.ac.id

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014 2

Say that shorten(x) is the prefix of x with one fewer

character. The next simple observation to make is that

shorten(overlap(x,y)) is still a prefix of y, but is also a

suffix of shorten(x).

So we can find overlap(x,y) by adding one more

character to some word that's a suffix of shorten(x) and a

prefix of y. We can just find all such words using the loop

above, and return the first one for which adding one more

character produces a valid overlap:

 z = overlap(shorten(x),y)

 while (last char of x != y[length(z)])

 {

 if (z = empty) return overlap(x,y) =

empty

 else z = overlap(z,y)

 }

 return overlap(x,y) = z

So this gives us a recursive algorithm for computing the

overlap function in general. If we apply this algorithm for

x=some prefix of the pattern, and y=the pattern itself, we

see that all recursive calls have similar arguments. So if

we store each value as we compute it, we can look it up

instead of computing it again.

2.2 BOYER MOORE

Boyer-Moore Algorithm is one of string matching

algorithm. This algorithm is made by R.M Boyer and J.S

Moore. The main idea of this algorithm is to find the

string by comparing character start from the right

character of the text. Using this algorithm, at the average

will result a faster process if we compare with the other

algorithm. The reason why searching from right position

(the last position of the string) shown in the example :

Image 1. Example Boyer-Moore Step1

At the example above, by comparing character from the

last position of the string, we ca see that character “n” on

the “kanan” string didn’t match with the character “o” on

“radio” string which is searched, and character “n” is

never exist in string “radio”, so the string “radio” can be

moved overstepping string “kanan”, so the position will

be like this:

Image 2. Example Boyer-Moore Step2

In this example, we can see Boyer-Moore can make a

character jump bigger so it can make the searching goes

fast by only comparing more few character, and directly

know that the string searched is not found, so it can

moved to the next position.

B. Common Mistakes on Writing

There are 4 main types of mistake in written language:

spelling, punctuation, grammar and usage.

2.3 SPELLING MISTAKES

English spelling is irregular and even many native-

speaker adults have difficulties with it. Spelling mistakes

do not usually prevent the reader from understanding what

the writer is trying to say, but they can create a negative

impression. For this reason it is advisable to try to remove

them from important pieces of writing. Diligent use of a

dictionary is a good alternative. For high stakes writing,

e.g. job applications, the piece should be given to a

teacher to check over. Extensive reading in English is a

very good way in the longer term to learn English spelling

patterns, so that mistakes are less likely.

2.4 PUNCTUATION MISTAKES

These mistakes are due to the lack of a clear

understanding of what a sentence is, and they result in

fragments (incomplete sentences) or run-ons ('sentences'

that do not end when they should). Punctuation mistakes

can often be spotted if the student reads the writing aloud.

If a natural pause in the reading does not correspond with,

say, a comma or a full-stop in the written text, then it is

likely that the punctuation is faulty. Important writing

should be given to a competent native-speaker to check.

Extensive reading, especially of non-fiction, both in

English and the mother tongue, will help students

understand the concept of the sentence as the basis of

good writing.

2.5 GRAMMAR MISTAKES

Grammar mistakes are the next type of error commonly

made. For example, people often do not choose the

correct English verb tense for expressing an idea or do not

use it in its correct form. They may fail to use the articles

(a/the) correctly, or place words in the wrong order in a

sentence.

Some grammar mistakes are easy for learners to correct

themselves, particularly if they read their writing aloud.

Other grammar mistakes are not easy to find, however,

because the learner simply does not yet know the correct

way to express an idea in English. Looking in a grammar

book will not often help in such circumstances - the best

thing to do is to ask a native speaker to check the writing.

In the long term most grammar mistakes will disappear

by themselves, particularly if the learner does extensive

reading in English.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014 3

III. EDITING TEXT WITH STRING MATCHING

A. Detecting Common Mistakes with String

Matching

Common mistakes in writing actually has its own

pattern. For example in spelling mistakes, computers can

detect mistakes in spelling with their spell checker. The

word “tabel” which should be “table”, word “tesr” with

“test” and so on. This is the example of spell checker on

email application.

Image 3. Spell checker in email

So the mistakes in spelling has their own pattern. If we

collect it and save it, it can be a resources for making

software to edit common mistake in writing. This software

works just like a compiler of code, in spelling mistakes it

checks wheter there’s spelling mistakes or no in a

paragraph or text. If the the mistakes are found, it will

otomaticly block the words and asking user to choose

which words does he/she means.

Image 4. Example of punctuation mistake

In punctuatuion mistakes, this software works in

diffterent way with spelling checker. As we know, there’s

a pattern how to punctuate a text. For example, fullstop

“.” will not places after preposition or relational term. For

example, after word “in” “of” “then” “next to” will never

followed by full stop. Else, question mark “?” will be

place in the end of sentence which has question word such

as “what” and “why”. With this pattern, we can use string

matching algorithm to edit a text with puctuation

mistakes.

For grammar mistakes, we can see the pattern of

common sentence. The subject is always placed in front of

the predicate. Just a simple pattern, that can help us detect

grammar mistakes on a pragraph or text. We should make

a resource, which devide word into two, subject and

predicate. Then looping compare two words side by side,

if there is sequence of the word predicate before subject,

whithout any subject before that predicat, it will give an

underline on those two words. For example, sentence “I

love you”, will not detected as a grammar mistakes

because before “love” there is subject “I”. And sentence

“work you today” will detected as a grammar mistakes,

because there is not any subject before the word “work”.

Image 5. Tree of clausa

Another mistakes that can be detected by this program

is efectiveness sentence mistake. A sentence is a good

sentence when it doesn’t consist more than 20 words. If a

sentence, having more than twenty words and not yet

found a fullstop or question mark, this software will make

underscore in that sentence.

String matching algorithm used in this program is the

combination of KMP and Boyer Moore. For checking

spelling mistakes and puctuation mistakes, Boyer Moore

is more suitable. KMP used to check grammar mistakes

and non effective sentence.

B. Pseudocode

While (not the end of text) do {

 checkSpelling();

 checkPunctuation();

 checkGrammar();

 checkEffectiveness();

}

checkSpelling(){

 if (word = misspell) {

 show alternative

}

}

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014 4

checkPunctuation(){

 temp = word before punctuation

 p = punctuation;

if (p == “.” and (temp == relation word or

temp = preprosition) {

 underline(temp)

}

}

checkGrammar(){

 temp1 = word1

 temp2 = word after word1

 temp3 = word after word2

if ((temp1 != subject) and (temp == predicate)

and (temp3 == subject)) {

 underline(temp2)

 underline(temp3)

}

checkEffectiveness(){

 words = word before fullstop or question mark

countword = number of word before fullstop or

question mark

 if (countword >= 20) {

 underline(words)

}

}

}

IV. EXCESS AND LACK USING STRING MATCHING

TO EDIT TEXT

String matching is good to detect spelling mistakes and

punctuation mistakes. It will find the mistakes fast

because it used Boyer Moore algorithm which check from

the back of the word.

But, using string matching to edit text will need so

many external resources which have to save all the

mistakes pattern. It has been so many just only from

spelling mistakes resource, not yet resource for checking

grammar mistake.

V. CONCLUSION

A string matching can be used to detect common

mistakes in writing, such as spelling mistakes, puctuation

mistakes, grammar mistakes and uneffective sentence.

String matching algoritm which is suitable to find

spelling mistakes and puctuation mistakes fast is Boyer

Moore algorithm. Grammar mistakes and uneffective

sentence can be detect using KNP algorithm.

REFERENCES

[1] Munir, Rinaldi “Diktat Strategi Algoritma”, 2009.

[2] http://www.cs.utexas.edu/~moore/publications/fstrpos.pdf access

on Dec 12,2013

[3] http://www.ics.uci.edu/~eppstein/161/960227.html access on Dec

12,2013

[4] http://esl.fis.edu/learners/advice/mistakes.htm access on Dec

12,2013

[5] http://help.gmx.com/mail/messages/new/spellcheck/?si=jgSOp.1sF

n38.3fnHaZ.9** (image 3 source) access on Dec 12, 2013

[6] http://money.uk.msn.com/features/how-to-spot-phishing-

scam?page=3 (image 4 source) access on Dec 12, 2013

[7] http://languagetools.info/grammarpedia/clause.htm (image 5

source) access on Dec 12, 2013

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

ttd

Isabella Julia Putri

13511033

http://www.cs.utexas.edu/~moore/publications/fstrpos.pdf
http://www.ics.uci.edu/~eppstein/161/960227.html
http://esl.fis.edu/learners/advice/mistakes.htm
http://help.gmx.com/mail/messages/new/spellcheck/?si=jgSOp.1sFn38.3fnHaZ.9**
http://help.gmx.com/mail/messages/new/spellcheck/?si=jgSOp.1sFn38.3fnHaZ.9**
http://money.uk.msn.com/features/how-to-spot-phishing-scam?page=3
http://money.uk.msn.com/features/how-to-spot-phishing-scam?page=3
http://languagetools.info/grammarpedia/clause.htm

