

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 1 of 6

Floyd-Warshall Algorithm Application on Optimizing

Bandung City Travelling Path Based on Traffic Density

Muhammad Harits Shalahuddin Adil Haqqi Elfahmi/13511046

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13511046@std.stei.itb.ac.id

Abstract—Floyd-Warshall is a Dynamic Programming

algorithm to find All Pair Shortest Path. This paper focuses

in trying to convert Bandung map from Google Maps into

undirected graph, with live traffic detection turned on, and

approximate the weight based on the traffic density. After

that it tries to find all possible path with shortest route,

thus helping tourist/locals finding shortest paths between

main intersections in the city.

Index Terms—floyd-warshall, bandung, shortest path,

traffic, density.

1. INTRODUCTION

1.1 PATH FINDING ALGORITHM

Path finding is one of the most interesting problems in

programming, as such, there have been numerous

solution proposed to solve many kinds of its variants.

One of its variants, shortest path, is the one discussed in

this paper.

One of the shortest path algorithm with Dynamic

Programming (DP) approach is the Floyd-Warshall

algorithm, which calculates the shortest distance from

every node to every other node in a graph (All-Pair

Shortest Path).

1.3 GOOGLE MAPS

Google Maps is one of Google products that offers

location finder tool, street maps and a route planner for

traveling by foot, car, bike (beta), or with public

transportation. It also includes a locator for urban

businesses in numerous countries around the world. One

of the interesting feature that Google Maps offer is the

almost live traffic density detection feature, which

Google Maps detects based on smartphone user location.1

1.2 BANDUNG CITY AS A TRAVEL DESTINATION

Bandung is the capital city of West Java, one of the

famous city for travelling tourist because of its fresh air,

unique landmarks, and kind locals.

The Dutch colonials first established tea plantations

around the mountains in the eighteenth century, and a

road was constructed to connect the plantation area to the

capital (180 kilometres (112 miles) to the northwest).

The Dutch inhabitants of the city demanded

establishment of a municipality (gemeente), which was

granted in 1906, and Bandung gradually developed itself

into a resort city for plantation owners. Luxurious hotels,

restaurants, cafes and European boutiques were opened,

hence the city was nicknamed Parijs van Java (Dutch:

"The Paris of Java").

Since Indonesia achieved independence in 1945, the

city has experienced rapid development and urbanisation,

transforming Bandung from idyllic town into a dense

16,500 people/km2 metropolitan area, a living space for

over 2 million people. Natural resources have been

exploited excessively, particularly by conversion of

protected upland area into highland villas and real estate.

Although the city has encountered many problems

(ranging from waste disposal, floods to chaotic traffic

system, etc.), Bandung still attracts immigrants and

weekend travelers.

But just like other capital cities, Bandung has a

common problem: traffic jam.

Because of the reason stated above, this paper will

focus on optimizing travelling path between main street

intersection in Bandung based on Google Maps live

traffic detection feature.

2. THEORIES

2.1 FLOYD-WARSHALL ALGORITHM

In computer science, the Floyd–Warshall algorithm

(also known as Floyd's algorithm, Roy–Warshall

algorithm, Roy–Floyd algorithm, or the WFI algorithm)

is a graph analysis algorithm for finding shortest paths in

a weighted graph with positive or negative edge weights

(but with no negative cycles).

The Floyd–Warshall algorithm compares all possible

paths through the graph between each pair of vertices. It

is able to do this with Θ(|V|3) comparisons in a graph.

This is remarkable considering that there may be up to

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 2 of 6

Ω(|V|2) edges in the graph, and every combination of

edges is tested. It does so by incrementally improving an

estimate on the shortest path between two vertices, until

the estimate is optimal.

The basic idea behind Floyd Warshall’s is to gradually

allow the usage of intermediate vertices to form the

shortest paths. Let the vertices be labeled from 0 to ‘V -

1’. We start with direct edges only, i.e. shortest path of

vertex i to vertex j, denoted as sp(i,j) = weight of edge

(i,j). We then find shortest paths between any two

vertices with help of restricted intermediate vertices from

vertex [0 ... k]. First, we only allow k = 0, then k = 1, ...,

up to k = V-1.

Figure 2.1.1: Floyd Warshall’s Explanation

In Figure 2.1.1, we want to find sp(3,4). The shortest

possible path is 3-0-2-4 with cost 3. But how to reach this

solution? We know that with direct edges only, sp(3,4) =

5, as in Figure 4.18.A. The solution for sp(3,4) will

eventually be reached from sp(3,2)+sp(2,4). But with

only direct edges, sp(3,2)+sp(2,4) = 3+1 is still > 3.

When we allow k = 0, i.e. vertex 0 can now be used as

an intermediate vertex, then sp(3,4) is reduced as sp(3,4)

= sp(3,0)+sp(0,4) = 1+3 = 4, as in Figure 4.18.B. Note

that with k = 0, sp(3,2) – which we will need later – also

drop from 3 to sp(3,0)+sp(0,2) = 1+1 = 2. Floyd

Warshall’s will process sp(i,j) for all pairs considering

only vertex 0 as the intermediate vertex.

When we allow k = 1, i.e. vertex 0 and 1 can now be

used as the intermediate vertices, then it happens that

there is no change to sp(3,4), sp(3,2), nor to sp(2,4).

When we allow k = 2, i.e. vertices 0, 1, and 2 now can

be used as the intermediate vertices, then sp(3,4) is

reduced again as sp(3,4) = sp(3,2)+sp(2,4) = 2+1 = 3.

Floyd Warshall’s repeats this process for k = 3 and

finally k = 4 but sp(3,4) remains at 3.

We define Dki,j to be the shortest distance from i to j

with only [0..k] as intermediate vertices.

Then, Floyd Warshall’s recurrence is as follows:

D−1
i,j = weight(i, j). This is the base case when we do

not use any intermediate vertices.

Dk
i,j = min(Dk−1

i,j, Dk−1
i,k + Dk−1

k,j) = min(not using

vertex k, using k), for k ≥ 0, see Figure 2.1.2.

Figure 2.1.2: Using Intermediate Vertex to (Possibly)

Shorten Path

This DP formulation requires us to fill the entries layer

by layer. To fill out an entry in the table k, we make use

of entries in the table k-1. For example, to calculate D2
3,4,

(row 3, column 4, in table k = 2, index start from 0), we

look at the minimum of D1
3,4 or the sum of D1

3,2 + D1
2,4.

See Figure 2.1.3 for illustration.

Figure 2.1.3: Floyd Warshall’s DP Table

The naıve implementation is to use 3-dimensional

matrix D[k][i][j] of size O(V3). However, we can utilize a

space-saving trick by dropping dimension k and

computing D[i][j] ‘on-the-fly’.Thus, the Floyd Warshall’s

algorithm just need O(V2) space although it still runs in

O(V3).2

The pseudecode implementation of the Floyd-Warshall

algorithm is as shown below.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 3 of 6

After executing the code above, we can get the shortest

distance from node A to node B in the variable

dist[A][B].

But because we would like to know the shortest path

between intersections (node) we need to store the shortest

past from A to B in the DP matrix, because of that we

will use such node struct (in C++ code):

With such data structure, we can make the Floyd-

Warshall algorithm that saves the intersection visited in

the shortest path between all intersection.

The algorithm is as follows:

And so with the code above we can get the path of the

shortest distance from node A to node B in the variable

path[A][B].

2.2 GOOGLE MAPS

Figure 2.2.1: Google Map’s Live Traffic Option

In the Google Maps interface, after enabling the traffic

option on the top left corner of the interface, on the

bottom left corner user can see the live traffic guide,

where the road will be marked as the corresponding

color: the slowest is in red-striped black pattern, followed

by red, yellow, and the fastest lane is marked green.

Figure 2.2.2: Google Map’s Live Traffic Detection

Example

The following is Bandung city map preview with

traffic detection enabled on Google Map:

let dist be a |V| × |V| array of minimum

distances initialized to ∞ (infinity)

 for each vertex v

 dist[v][v] ← 0

 path[v][v] ← {}

 for each edge (u,v)

 dist[u][v] ← w(u,v) // the weight

of the edge (u,v)

 for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][j] > dist[i][k] +

dist[k][j]

 dist[i][j] ← dist[i][k] +

dist[k][j]

 path[i][j] ←

append(path[i][k], path[k][j])

 end if

let dist be a |V| × |V| array of

minimum distances initialized to ∞

(infinity)

 for each vertex v

 dist[v][v] ← 0

 for each edge (u,v)

 dist[u][v] ← w(u,v) // the weight

of the edge (u,v)

 for k from 1 to |V|

 for i from 1 to |V|

 for j from 1 to |V|

 if dist[i][j] > dist[i][k] +

dist[k][j]

 dist[i][j] ← dist[i][k] +

dist[k][j]

 end if

struct typedef{

 vector<int> path;

 int dist;

} Node;

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 4 of 6

3. IMPLEMENTATION

3.1 BANDUNG CITY GRAPH SIMPLIFICATION

In this paper we will use the traffic map from Monday,

12.00pm (Data is estimated based on past conditions)3.

The actual map is shown below.

Figure 3.1.1: Bandung City Traffic on Monday 12:00pm

In the map we can see that some of the road is

colorless, that is because Google Maps doesn’t have

enough data from smartphones that currently resides in

that area, either there isn’t any or they just don’t give the

permission for Google to locate their place. And so, for

easier implementation purpose, we will assume that the

colorless road is a green road.

With that assumption, the new map looks like the

following:

Figure 3.1.2: Bandung City Traffic Simplified (1)

For the next step we will (1) divide the road by a

small, uniform segment which we will base the

approximation of the edge weight on, and (2) pick

several main intersection as the node for the graph and

assign number to it.

With those two modifications applied, the new map

looks like following:

Figure 3.1.3: Bandung City Traffic Simplified (2)

The segmentation on the graph will have values as

follows:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 5 of 6

No Color Values

1 Red-Black 4

2 Red 3

3 Yellow 2

4 Green 1

Table 3.1.1: Segmentation Weighting

By the information provided by the table above and

applying it on the Figure 3.1.3, the redrawn graph looks

like this:

Figure 3.1.4: Bandung City Traffic Simplified (3)

3.2 APPLICATING FLOYD-WARSHALL ON THE SIMPLIFIED

GRAPH

The core C++ implementation from the Floyd-

Warshall with path recognition algorithm is as follows:

From the figure 3.1.4, we can extract the edges for the

Floyd-Warshall input below:

After executing the Floyd-Warshall algorithm, the

program will asks for start and finish node, which we

will use for the next section of this paper.

3.3 RESULTS

Some testcase output result example from the program

execution is as follows:

for(int k=0;k<maxNode;k++){

 for(int i=0;i<maxNode;i++){

 for(int

j=0;j<maxNode;j++){

 if(adjMat[i][j].dist

> adjMat[i][k].dist +

adjMat[k][j].dist){

adjMat[i][j].dist =

adjMat[i][k].dist +

adjMat[k][j].dist;

 vector<int>

dummy(adjMat[i][k].path.begin(),

adjMat[i][k].path.end()-1);

adjMat[i][j].path = append(dummy,

adjMat[k][j].path);

 }}}}

41 //number of edges

1 2 30 //from node 1 to 2 weighted 30

1 3 29

1 4 49

3 4 6

4 5 6

2 5 20

5 24 62

3 6 11

6 7 12

5 7 10

7 23 32

23 24 25

6 8 37

8 9 25

9 6 20

9 25 12

25 10 16

10 7 29

10 23 11

10 11 15

11 23 17

11 12 12

24 12 21

8 13 22

13 16 27

14 16 9

14 9 20

14 15 13

16 17 10

15 17 24

25 12 24

17 18 12

18 19 13

19 11 39

21 12 26

13 20 24

20 16 8

20 21 44

13 22 48

22 20 21

22 21 42

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Page 6 of 6

4. ALGORITHM ANALYSIS

Floyd-Warshall is an algorithm with O(V3)

complexity. Although it is very simple to implement,

Floyd-Warshall is an ineffective algorithm for problems

with V > 100.

After the simplification of the Bandung City map, we

acquired a graph with 41 edges and 25 vertices. Because

of its low vertices count, this problem is suitable to be

solved with Floyd-Warshall algorithm.

By the result of the execution of the program, it is

indeed true that this problem was solved very fast

(0.002s).

5. CONCLUSION

Bandung city map can be converted into a weighted

graph with road as the edge and the intersection as the

vertice. From that we can calculate the shortest path

between two intersection.

For that purpose Floyd-Warshall is a suitable

algorithm for finding the fastest travelling path between

two intersections in Bandung city based on traffic

density. It is very fast based on execution time.

REFERENCES

[1] http://www.theconnectivist.com/2013/07/how-google-tracks-traffic/,

19 Desember 2013, 12:43

[2] Steven Halim, Felix Halim. Competitive Programming 3: The New

Lower Bound of Programming Contests. 2010.

[3] http://maps.google.com, 20 Desember 2013, 13:59

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Muhammad Harits Shalahuddin Adil Haqqi Elfahmi

13511046

Input:

1 24

Output:

Time required for Floyd-Warshall algorithm

execution:

0.002s

adjMat[1][24]: 103

Intersection(s) traveled: 1-3-4-5-24.

Input:

1 15

Output:

Time required for Floyd-Warshall algorithm

execution:

0.002s

adjMat[1][15]: 93

Intersection(s) traveled: 1-3-6-9-14-15.

Input:

6 12

Output:

Time required for Floyd-Warshall algorithm

execution:

0.002s

adjMat[6][12]: 56

Intersection(s) traveled: 6-9-25-12.

