
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Problem Solving Approaches for Load Balancing Problem
Mochammad Dikra Prasetya 13511030

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

dikraprasetya@yahoo.co.id; 13511030@std.stei.itb.ac.id

Abstract—Load balancing has been a problem in computer

networking, which also happened on our daily life since long,

for example: loading oil drums in N-trucks, packaging house

inventories for relocation with N-boxes, etc. Most people

already aware of it but remained with conventional solution,

which is brute force (or complete search in algorithm term).

As the problem exist for centuries, computer science,

however, has been growing rapidly and expands its reach of

problem solving. This paper will try to confront the problem

with various applicable problem solving approaches and

concluded with which approach is better based on analysis.

Approaches which this paper going to discuss are greedy,

dynamic programming, and heuristic searching.

Index Terms—Load Balancing, Greedy, Dynamic

Programming, Heuristic, IDA*.

I. INTRODUCTION

Load balancing is a computer networking method for

distributing workloads across multiple computing

resources, such as computers, a computer cluster, network

links, central processing units or disk drives. Load

balancing aims to optimize resource use, maximize

throughput, minimize response time, and avoid overload of

any one of the resources. Load balancing for a parallel

system is one of the most important problems which has to

be solved in order to enable the efficient use of parallel

computer systems. The whole work should be completed

as fast as possible. As the resources are expensive, the work

should be distributed fairly and kept the workers busy.

The simplified version of the problem could be found on

our daily life, balancing loads for oil trucks for example.

Drums might have different sizes or different weights,

loading items should be arranged properly. Whether an

item should be loaded in truck A or truck B became the

main problem in balancing loads. A similar problem could

be found in house relocations. Packaging house inventories

depends on the number of boxes available and the size of

items. Fitting item needs the right distribution.

The term balanced that will be covered in the paper will

be measured in such function:

𝐴 = (∑ 𝑋𝑖

𝑛

𝑖=1

) 𝑛⁄

𝑓(𝑛) = ∑|𝑋𝑖 − 𝐴|

𝑛

𝑖=1

Figure 1 – Illustration loading drums to truck

Let us define above function as imbalance function, the

sum of the absolute differences between total mass of each

truck and the average of all truck mass, whereas the more

balanced distribution, the less value we get from the

function. The value n describes the number of trucks, Xi

represents total mass on each truck, and A is the average

mass of all trucks.

As a generalization of the problem, the statement will be

specified to a case whereas m items are need to be loaded

and n containers are available. The objective is to seek the

minimum value of imbalance function.

II. THEORY

A. Greedy Algorithm

Greedy algorithms tend to find locally optimal choice.

In many problems, a greedy strategy does not in general

produce an optimal solution, but nonetheless a greedy

heuristic may yield locally optimal solutions that

approximate a global optimal solution in a reasonable time.

Greedy algorithm consists of properties: candidate set;

selection function; feasibility function; objective function;

and solution function. A candidate set contains solution

candidates and will be eliminated by a selection function to

choose the best candidate to be added to the solution.

Feasibility function used to determine if a candidate can be

used to contribute to a solution. An objective function

determines the value that will assigned to the solution. A

solution function contains the accepted solution

discovered. If a greedy algorithm is applicable for finding

global solution, then on most cases it might be the best

mailto:dikraprasetya@yahoo.co.id
mailto:13511030@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

solution for the problem.

An example of greedy would be taking a local solution

on the Traveling Salesman Problem, which illustrated

below:

Figure 2 - TSP greedy algorithm illustration

B. Dynamic Programming

Dynamic programming is typically applied to

optimization problems. Like divide-and-conquer, this

approach solve complex problems by breaking them down

into simpler subproblems. The illustration of subproblems

can we see from the problem Fibonacci:

Figure 3- Fibonacci subproblem breakdown

It is applicable to problems exhibiting the properties of

overlapping subproblems. The method takes far less time

than brute force methods. This approach could be defined

as a sequence of steps:

 Characterize the structure of an optimal solution;

 Recursively define the value of an optimal

solution;

 Compute the value of an optimal solution in a

bottom-up fashion;

 Construct an optimal solution from computed

information.

The concept of dynamic programming is exchanging

memory for faster time response. If applicable, time

complexity should be proportional to the size of

memorization table.

As an example, here it is a Fibonacci problem with naïve

approach compared with dynamic programming better

solution.

Naïve approach:

function fib(n)

 if n = 0 return 0

 if n = 1 return 1

 return fib(n − 1) + fib(n − 2)

Dynamic programming approach:

var m := map(0 → 0, 1 → 1)

 function fib(n)

 if key n is not in map m

 m[n] := fib(n − 1) + fib(n

− 2)

 return m[n]

C. Heuristic Searching

While the exhaustive search is impractical, heuristic

methods are used to speed up the process of finding a

satisfactory solution via mental shortcuts to ease the

cognitive load of making a decision. A* uses a best-first

search and finds a least-cost path from a given initial node

to one goal node (out of one or more possible goals). As

A* traverses the graph, it follows a path of the lowest

expected total cost or distance, keeping a sorted priority

queue of alternate path segments along the way.

However A* could be optimized combined with iterative

deepening depth-first-search to keep the process use less

memory, which these days is known as IDA* (iterative

deepening A*). While the standard iterative deepening

depth-first search uses search depth as the cutoff for each

iteration the IDA* uses the more informative f(n) = g(n) +

h(n) where g(n) is the cost to travel from the root to node n

and h(n) is the heuristic estimate of the cost to travel from

n to the solution. IDA* follows this pattern of pseudocode:

node current node

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 g the cost to reach current node

 f estimated cost of the cheapest

path (root..node..goal)

 h(node) estimated cost of the cheapest

path (node..goal)

 cost(node, succ) path cost function

 is_goal(node) goal test

 successors(node) node expanding function

 procedure ida_star(root, cost(), is_goal(), h())

 bound := h(root)

 loop

 t := search(root, 0, bound)

 if t = FOUND then return FOUND

 if t = ∞ then return NOT_FOUND

 bound := t

 end loop

 end procedure

 function search(node, g, bound)

 f := g + h(node)

 if f > bound then return f

 if is_goal(node) then return FOUND

 min := ∞

 for succ in successors(node) do

 t := search(succ, g + cost(node, succ), bound)

 if t = FOUND then return FOUND

 if t < min then min := t

 end for

 return min

 end function

IV. IMPLEMENTATION & ANALYSIS

A. Naïve Approach

Straight-forward solution is always an option for

configurationally problems. As it is straight-forward, we

will have a function that searching (up to) the entire search

space in bid to obtain the required solution. Every steps

should determine where should we put the i-th item into.

Each item must be put only once on one of the containers.

Then after the whole item have been put, we should count

the value of imbalance function and keep the minimum

value. Below is the pseudocode of the solution:

function completeSearch(n)

 if all item have been put

 ans = min(ans, imbalanaceFunct())

 else

 for all containern

 try put at Container-i

 completeSearch(n+1)

 For most cases complete search would give us the

optimal solution, but takes too much time. The complexity

is at least O(n!) whereas the method will look in all of the

possible configurations.

B. Greedy Algorithm

The simplest greedy that one may thought would be

Greedy by Weight, whereas after sorting all of the weight,

each of them will be distributed consecutively with the

number of item on the container at most the m/n + 1 (for

balancing the distribution). Below is the scratch

pseudocode:

function greedyByWeight(n)

 sort all item in ascending order

 for each item put to container by order

But after that the problem arise is that approach would

only give us local solution, which is not always the best

one. To search the global solution, there are some

observations:

Observation 1: If there exists an empty container, at

least one container with more than one item must be moved

to this empty container. Otherwise the empty container

would give us greater value of imbalance function.

Observation 2: If m > n, then m−n items must be paired

with one other item already in some containers, which is

known as Pigeonhole principle.

Observation 3: The greatest value of weight should be

put alone. Pairing it with other item would only make the

weight gap bigger.

By these observations, the optimal solution would be

found in a condition where the item could be put as a pair

(m <= 2n). The pairing will come in greedy, we match the

biggest weight item with the lightest weight item available.

If m < 2n, we should put dummy items with zero weight as

the greatest item should be put alone.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Figure 4- Optimal weight pairing illustration

Above illustration showed us that by pairing the greatest

and lowest weight item we could get the most balanced

configuration on the case. Below is the pseudocode of the

optimal solution:

function optimalGreedy(n)

 put dummy items so we have 2n item

 sort all item in ascending order

 for i = 1 to n

 put i-th and n-i+1-th item to

 container i

Therefore, our Greedy by Weight approach with the

greedy pairing strategy will always give us the optimal

solution. This solution is also have a satisfying time

complexity of O(n log n) which comes from the sorting

time. If we omit the sorting time, we would get an O(n)

time complexity. However, this solution are limited to the

fulfillment of condition m <= 2n, where the item could be

put as a pair at most. As the problem grow, a more

sophisticated observations should be conducted and maybe

greedy approach would not be an applicable solution.

C. Dynamic Programming

Dynamic programming approach would be applicable if

the problem can be broke-down to subproblems and

eventually the base of recursive. There are some

observations that provides us the structure of dynamic

programming recursive:

Observation 1: A configuration where there is no items

would make the imbalance function return 0.

Observation 2: When putting i-th item, its best imbalance

function score would depends on i-1-th item configuration.

From above observations, we could translate them into

the recursive formula of dynamic programming solution.

Meanwhile if we look closely we could see that the

problem is quite similar with Traveling Salesman Problem

as the dynamic programming would take a set type

parameter that contains last configurations. The formula

would represented as the code below:

Map bestSol <= map of configuration set,

 The dp table n x 2n

function dpSolution(n; last_conf)

 if n = 0 return 0

 else

 for each container try to put item-n

 try to put

 bestSol = currentImbalanaceFunc()

 + dpSolution(n-1; lastlastconf)

 return bestSol;

The time complexity of the solution above would be O(n

2n), as it corresponds the size of memorization table. It is

quite fast dynamic programming approach for such

problem, however, the table size would limit the range of

constraint covered by the solution. Better solution is not at

reach of dynamic programming whereas this problem is

similar with Traveling Salesman Problem while that

problem still stuck in the same state of dynamic

programming.

D. Heuristic Searching

IDA* should be applicable in such problem. Heuristic

searching needs heuristic function where it counts the

closest forecast to reach the best solution. Pruning is the

most important property of heuristic searching. Below is

the observations that will support our heuristics:

Observation 1: Heuristic searching does better at limited

space, so we should limit it at some value. We could apply

binary search to find the answer, and use the pivot value as

the limit. Therefore, heuristic searching will be taking the

role of validation function of binary search.

Observation 2: If we set the limit value of answer, we

could forecast the maximum number of space that we could

waste on. Therefore we could reduce the searching space

that we should visit on the search.

Observation 3: If we try to put i-th item which weights

the same as i-1-th, we start to put it on the last container

that i-1-th try to put.

With those observations, we could meet a great time

complexity thanks to all of the pruning on above

observations. The whole algorithm will be described in the

pseudocode below:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Limitval= the limit from pivot

function heuristicCheck(n)

 if all items is put

 return true

 else

 for each container try to put item-n

 try to put

 check if waste is applicable

 for next try

 if heuristicCheck(n+1)

 return true

 return false

function binarySearch(n)

 le = 1

 ri = n

 while le < ri

 piv = (le+ri)/2

 set piv as limitval

 if heuristicSearch(1)

 ri = piv

 else

 le = piv+1

 return ri //the minimum

 //imbalance function

The heuristic search runs very fast for the most cases.

Pruning made the search space reduced vastly and could

handle bigger case of n and m.

V. CONCLUSION

From all of the implementation above, the most

applicable and best at time would be heuristic searching

using binary search and IDA* validation check. But for

some cases, greedy works far better on the case m <= 2n as

the optimal solution do exist at that case.

REFERENCES

[1] Steven Halim. Competitive Programming 3rd Edition, 2013

[2] Rinaldi Munir, Diktat Strategi Algoritma, 2009.

[3] Thomas H Cormen, Introduction to Algorithm, 2003.
[4] http://mathfaculty.fullerton.edu/mathews//n2003/BisectionMod.ht

ml

[5] http://www.apl.jhu.edu/~hall/AI-Programming/IDA-Star.html

[6] www.cs.berkeley.edu/~vazirani/algorithms/chap5.pdf

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Mochammad Dikra Prasetya 13511030

http://mathfaculty.fullerton.edu/mathews/n2003/BisectionMod.html
http://mathfaculty.fullerton.edu/mathews/n2003/BisectionMod.html
http://www.apl.jhu.edu/~hall/AI-Programming/IDA-Star.html

