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Abstract—Load balancing has been a problem in computer 

networking, which also happened on our daily life since long, 

for example: loading oil drums in N-trucks, packaging house 

inventories for relocation with N-boxes, etc. Most people 

already aware of it but remained with conventional solution, 

which is brute force (or complete search in algorithm term). 

As the problem exist for centuries, computer science, 

however, has been growing rapidly and expands its reach of 

problem solving. This paper will try to confront the problem 

with various applicable problem solving approaches and 

concluded with which approach is better based on analysis. 

Approaches which this paper going to discuss are greedy, 

dynamic programming, and heuristic searching. 

 

Index Terms—Load Balancing, Greedy, Dynamic 

Programming, Heuristic, IDA*.  

 

I.   INTRODUCTION 

Load balancing is a computer networking method for 

distributing workloads across multiple computing 

resources, such as computers, a computer cluster, network 

links, central processing units or disk drives. Load 

balancing aims to optimize resource use, maximize 

throughput, minimize response time, and avoid overload of 

any one of the resources. Load balancing for a parallel 

system is one of the most important problems which has to 

be solved in order to enable the efficient use of parallel 

computer systems. The whole work should be completed 

as fast as possible. As the resources are expensive, the work 

should be distributed fairly and kept the workers busy. 

The simplified version of the problem could be found on 

our daily life, balancing loads for oil trucks for example. 

Drums might have different sizes or different weights, 

loading items should be arranged properly. Whether an 

item should be loaded in truck A or truck B became the 

main problem in balancing loads. A similar problem could 

be found in house relocations. Packaging house inventories 

depends on the number of boxes available and the size of 

items. Fitting item needs the right distribution. 

The term balanced that will be covered in the paper will 

be measured in such function: 
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Figure 1 – Illustration loading drums to truck 

 

Let us define above function as imbalance function, the 

sum of the absolute differences between total mass of each 

truck and the average of all truck mass, whereas the more 

balanced distribution, the less value we get from the 

function. The value n describes the number of trucks, Xi 

represents total mass on each truck, and A is the average 

mass of all trucks.  

As a generalization of the problem, the statement will be 

specified to a case whereas m items are need to be loaded 

and n containers are available. The objective is to seek the 

minimum value of imbalance function. 

 

II.  THEORY 

A. Greedy Algorithm 

Greedy algorithms tend to find locally optimal choice. 

In many problems, a greedy strategy does not in general 

produce an optimal solution, but nonetheless a greedy 

heuristic may yield locally optimal solutions that 

approximate a global optimal solution in a reasonable time. 

Greedy algorithm consists of properties: candidate set; 

selection function; feasibility function; objective function; 

and solution function. A candidate set contains solution 

candidates and will be eliminated by a selection function to 

choose the best candidate to be added to the solution. 

Feasibility function used to determine if a candidate can be 

used to contribute to a solution. An objective function 

determines the value that will assigned to the solution. A 

solution function contains the accepted solution 

discovered. If a greedy algorithm is applicable for finding 

global solution, then on most cases it might be the best 
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solution for the problem. 

An example of greedy would be taking a local solution 

on the Traveling Salesman Problem, which illustrated 

below: 

 

Figure 2 - TSP greedy algorithm illustration 

 

B. Dynamic Programming 

Dynamic programming is typically applied to 

optimization problems. Like divide-and-conquer, this 

approach solve complex problems by breaking them down 

into simpler subproblems. The illustration of subproblems 

can we see from the problem Fibonacci: 

 

 

Figure 3- Fibonacci subproblem breakdown 

It is applicable to problems exhibiting the properties of 

overlapping subproblems. The method takes far less time 

than brute force methods. This approach could be defined 

as a sequence of steps: 

 Characterize the structure of an optimal solution; 

 Recursively define the value of an optimal 

solution; 

 Compute the value of an optimal solution in a 

bottom-up fashion; 

 Construct an optimal solution from computed 

information. 

 

The concept of dynamic programming is exchanging 

memory for faster time response. If applicable, time 

complexity should be proportional to the size of 

memorization table.  

As an example, here it is a Fibonacci problem with naïve 

approach compared with dynamic programming better 

solution. 

 

Naïve approach: 

function fib(n) 

       if n = 0 return 0 

       if n = 1 return 1 

       return fib(n − 1) + fib(n − 2) 

 

 

Dynamic programming approach: 

var m := map(0 → 0, 1 → 1) 

   function fib(n) 

       if key n is not in map m  

           m[n] := fib(n − 1) + fib(n 

− 2) 

       return m[n] 

 

 

C. Heuristic Searching  

While the exhaustive search is impractical, heuristic 

methods are used to speed up the process of finding a 

satisfactory solution via mental shortcuts to ease the 

cognitive load of making a decision. A* uses a best-first 

search and finds a least-cost path from a given initial node 

to one goal node (out of one or more possible goals). As 

A* traverses the graph, it follows a path of the lowest 

expected total cost or distance, keeping a sorted priority 

queue of alternate path segments along the way. 

However A* could be optimized combined with iterative 

deepening depth-first-search to keep the process use less 

memory, which these days is known as IDA* (iterative 

deepening A*). While the standard iterative deepening 

depth-first search uses search depth as the cutoff for each 

iteration the IDA* uses the more informative f(n) = g(n) + 

h(n) where g(n) is the cost to travel from the root to node n 

and h(n) is the heuristic estimate of the cost to travel from 

n to the solution. IDA* follows this pattern of pseudocode: 

 

node              current node 
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 g                 the cost to reach current node 

 f                 estimated cost of the cheapest 

path (root..node..goal) 

 h(node)           estimated cost of the cheapest 

path (node..goal) 

 cost(node, succ)  path cost function 

 is_goal(node)     goal test 

 successors(node)  node expanding function 

  

 procedure ida_star(root, cost(), is_goal(), h()) 

   bound := h(root) 

   loop 

     t := search(root, 0, bound) 

     if t = FOUND then return FOUND 

     if t = ∞ then return NOT_FOUND 

     bound := t 

   end loop 

 end procedure 

  

 function search(node, g, bound) 

   f := g + h(node) 

   if f > bound then return f 

   if is_goal(node) then return FOUND 

   min := ∞ 

   for succ in successors(node) do 

     t := search(succ, g + cost(node, succ), bound) 

     if t = FOUND then return FOUND 

     if t < min then min := t 

   end for 

   return min 

 end function 

 

 

IV.   IMPLEMENTATION & ANALYSIS 

A. Naïve Approach 

Straight-forward solution is always an option for 

configurationally problems. As it is straight-forward, we 

will have a function that searching (up to) the entire search 

space in bid to obtain the required solution. Every steps 

should determine where should we put the i-th item into. 

Each item must be put only once on one of the containers. 

Then after the whole item have been put, we should count 

the value of imbalance function and keep the minimum 

value. Below is the pseudocode of the solution: 

 

function completeSearch(n) 

       if all item have been put   

           ans = min(ans, imbalanaceFunct()) 

       else 

           for all containern  

              try put at Container-i 

           completeSearch(n+1) 

 

 

 For most cases complete search would give us the 

optimal solution, but takes too much time. The complexity 

is at least O(n!) whereas the method will look in all of the 

possible configurations. 

 

B. Greedy Algorithm 

The simplest greedy that one may thought would be 

Greedy by Weight, whereas after sorting all of the weight, 

each of them will be distributed consecutively with the 

number of item on the container at most the m/n + 1 (for 

balancing the distribution). Below is the scratch 

pseudocode: 

 

 

function greedyByWeight(n) 

       sort all item in ascending order 

       for each item put to container by order 

 

 

But after that the problem arise is that approach would 

only give us local solution, which is not always the best 

one. To search the global solution, there are some 

observations: 

Observation 1: If there exists an empty container, at 

least one container with more than one item must be moved 

to this empty container. Otherwise the empty container 

would give us greater value of imbalance function. 

Observation 2: If m > n, then m−n items must be paired 

with one other item already in some containers, which is 

known as Pigeonhole principle. 

Observation 3: The greatest value of weight should be 

put alone. Pairing it with other item would only make the 

weight gap bigger. 

By these observations, the optimal solution would be 

found in a condition where the item could be put as a pair 

(m <= 2n). The pairing will come in greedy, we match the 

biggest weight item with the lightest weight item available. 

If m < 2n, we should put dummy items with zero weight as 

the greatest item should be put alone. 
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Figure 4- Optimal weight pairing illustration 

 

Above illustration showed us that by pairing the greatest 

and lowest weight item we could get the most balanced 

configuration on the case. Below is the pseudocode of the 

optimal solution: 

 

function optimalGreedy(n) 

     put dummy items so we have 2n item 

     sort all item in ascending order 

     for i = 1 to n 

         put i-th and n-i+1-th item to    

           container i 

 

Therefore, our Greedy by Weight approach with the 

greedy pairing strategy will always give us the optimal 

solution. This solution is also have a satisfying time 

complexity of O(n log n) which comes from the sorting 

time. If we omit the sorting time, we would get an O(n) 

time complexity. However, this solution are limited to the 

fulfillment of condition m <= 2n, where the item could be 

put as a pair at most. As the problem grow, a more 

sophisticated observations should be conducted and maybe 

greedy approach would not be an applicable solution. 

 

C. Dynamic Programming 

Dynamic programming approach would be applicable if 

the problem can be broke-down to subproblems and 

eventually the base of recursive. There are some 

observations that provides us the structure of dynamic 

programming recursive:  

Observation 1: A configuration where there is no items 

would make the imbalance function return 0. 

Observation 2: When putting i-th item, its best imbalance 

function score would depends on i-1-th item configuration. 

 

From above observations, we could translate them into 

the recursive formula of dynamic programming solution. 

Meanwhile if we look closely we could see that the 

problem is quite similar with Traveling Salesman Problem 

as the dynamic programming would take a set type 

parameter that contains last configurations. The formula 

would represented as the code below: 

 

Map bestSol <= map of configuration set,  

                The dp table  n x 2n 

function dpSolution(n; last_conf) 

   if n = 0  return 0 

   else     

   for each container try to put item-n 

        try to put 

        bestSol = currentImbalanaceFunc()  

              + dpSolution(n-1; lastlastconf) 

   return bestSol; 

 

The time complexity of the solution above would be O(n 

2n), as it corresponds the size of memorization table. It is 

quite fast dynamic programming approach for such 

problem, however, the table size would limit the range of 

constraint covered by the solution. Better solution is not at 

reach of dynamic programming whereas this problem is 

similar with Traveling Salesman Problem while that 

problem still stuck in the same state of dynamic 

programming.  

 

D. Heuristic Searching  

IDA* should be applicable in such problem. Heuristic 

searching needs heuristic function where it counts the 

closest forecast to reach the best solution. Pruning is the 

most important property of heuristic searching. Below is 

the observations that will support our heuristics: 

Observation 1: Heuristic searching does better at limited 

space, so we should limit it at some value. We could apply 

binary search to find the answer, and use the pivot value as 

the limit. Therefore, heuristic searching will be taking the 

role of validation function of binary search. 

Observation 2: If we set the limit value of answer, we 

could forecast the maximum number of space that we could 

waste on. Therefore we could reduce the searching space 

that we should visit on the search. 

Observation 3: If we try to put i-th item which weights 

the same as i-1-th, we start to put it on the last container 

that i-1-th try to put. 

With those observations, we could meet a great time 

complexity thanks to all of the pruning on above 

observations. The whole algorithm will be described in the 

pseudocode below: 
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Limitval= the limit from pivot 

function heuristicCheck(n) 

   if all items is put 

       return true 

   else     

   for each container try to put item-n 

        try to put 

        check if waste is applicable 

          for next try 

        if heuristicCheck(n+1) 

           return true 

        

     return false 

 

 

function binarySearch(n) 

   le = 1 

   ri = n  

   while le < ri 

     piv = (le+ri)/2 

     set piv as limitval  

     if heuristicSearch(1) 

        ri = piv 

     else 

        le = piv+1  

        

     return ri  //the minimum      

               //imbalance function 

 

The heuristic search runs very fast for the most cases. 

Pruning made the search space reduced vastly and could 

handle bigger case of n and m. 

 

 

V.   CONCLUSION 

From all of the implementation above, the most 

applicable and best at time would be heuristic searching 

using binary search and IDA* validation check. But for 

some cases, greedy works far better on the case m <= 2n as 

the optimal solution do exist at that case.  
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