
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Greedy Algorithm and String Matching in Battleship Game

Strategy Using Probability Density Matrix

Faiz Ilham Muhammad (13511080)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

faizilham@students.itb.ac.id

Abstract—Battleship game is a classic mathematical game

that use logical reasoning and some luck to play. There are

some algorithm to use for playing battleship game

efficiently, one of them is a greedy algorithm based on

probability density matrix of current game state. Aside of

the greedy property, the algorithm also use a string

matching algorithm to generate the probability density

matrix.

Index Terms— battleship, greedy, string matching,

probability density

I. INTRODUCTION

Battleship is one of many popular classic pencil-and-

paper game. The game objectives is to sink all opponent’s

battleships with minimum numbers of shot as possible.

Aside of the probabilistic nature of the game, it is possible

for a player to logically deduce which area to shoot to

maximize the probability of hitting an opponent ship. This

paper explains a greedy algorithm using probability

density matrix for playing battleship efficiently and string

matching algorithm for generating the probability density

matrix.

II. BATTLESHIP GAME DEFINITION & TERMS

Battleship game, as explained before, is a classic

pencil-and-paper guessing game. This game is played by

two player like chess and othello. Each player’s objective

is to sink all opponent’s ship by “shooting” it.

2.1. Gameplay

Battleship uses four grids, usually a 10x10 square, to

play. Each player are given two grids, one for recording

his/her shot to the opponent’s ships and one for recording

his/her opponent’s shot to his/her ships.

Before the game starts, each player must place their

ships on the grid. Each ship may not overlaps other ships,

but may touch other ship. There are five kinds of ships on

the game, with each ship’s dimension is 1xL where L is

its length.

Table 2.1. Types of ship in battleship game

Name Length

Aircraft Carrier 5

Battleship 4

Submarine 3

Cruiser 3

Destroyer 2

Figure 2.1. Ships positioning example

Everytime a player get a turn, he/she may shoot a

certain tile on the opponent’s grid. The opponent must

reply with a “hit” if the shot hit a ship or a “miss” if not.

If every tile that belongs to a ship was hit, the ship is sink

and the opponent must also declared that the ship sinks,

i.e. “my cruiser sinks!”. The last player who still have a

ship will be the winner.

III. BASIC ALGORITHM THEORIES

3.1. Greedy Algorithm and Principle

A greedy algorithm is an algorithm that employs

greedy principle “take what can you take now”; that is to

optimize global solution by taking current optimal

solution. Since greedy algorithm take current optimal

solution, the global solution it creates may be not optimal

and only close to the real optimal solution.

Greedy algorithms are consist of several elements:

1. Candidate Set

Set of elements that may be a part of the solution.

Usually, any object that are related directly to the

problem may be regarded as a member of

candidate set.

2. Solution Set

Set of selected elements from the candidate set to

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

build up the solution.

3. Selection Function

Function that is used to select an element of

candidate set. Selection function typically selects

element that optimize current state.

4. Constraint Function

Function that is used to check whether the selected

element satisfy certain constraints; the selected

element will be included if it satisifies the

constraints.

5. Objective Function

Funtion that is used to determine the optimization

of the solution.

All greedy algorithm have a generic scheme:

1. Initialize an empty solution set

2. Select an element from the candidate set using the

selection function

3. Remove the element from candidate set

4. Check whether the solution set will satisfy the

constraints if the selected element is added into it

using constraint function. If yes, add the selected

element to solution set

5. Check whether the solution set is complete. If

yes, finish. If not, repeat to step (2).

3.2. String Matching Algorithm

A string matching algorithm is an algorithm to check

whether a certain pattern is exist within a text. There are

many kinds of string matching algorithm, some of them

are brute-force string matching and KMP (Knuth-Morris-

Pratt) algorithm.

3.2.1. Brute-Force String Matching Algorithm

The brute-force string matching algorithm is defined

as below:

1. Align the pattern with the beginning of the text

2. For each character in pattern, check the whether it

is the same with the character in the text. If all

character matches, finish. If not, proceed to step

(3).

3. Shift the pattern by one character, so that the first

character of pattern aligned with the next

character of text. If the number of remaining

character of text >= length of pattern, repeat to

step (2).

3.2.2.KMP (Knuth-Morris-Pratt) Algorithm

The KMP algorithm is an improvement of the brute

force algorithm. The KMP algorithm allows shifting

pattern by more than one character depend on the border

function. The border function of a pattern is defined as the

maximum length of the same prefix and suffix of the

pattern. The KMP algorithm is defined as below:

1. Calculate border functions of the pattern

2. Align the pattern with the beginning of the text

3. For each character in pattern, check the whether it

is the same with the character in the text. If all

character matches, finish. If not, proceed to step

(4).

4. Shift the pattern by len – b(len) character(s), with

len the length of matching pattern and b(len) the

border function of pattern for length len. If the

number of remaining character of text >= length

of pattern, repeat to step (3).

IV. BATTLESHIP GAME ALGORITHM USING

PROBABILITY DENSITY MATRIX

There are some algorithm that can be used for playing

battleship game, one of them is using a probability

density matrix. A probability density matrix is a matrix

that describes the probability of a tile in the grid contains

a part of a ship. By using this, it is possible to make a

greedy algorithm that select a tile in the grid that have the

highest probability. However, because of the game’s

probabilistic nature, it is impossible to make any

algorithm that always yields most optimum solution; that

is to shoot all ships without miss.

The greedy algorithm elements are:

1. Candidate Set

Every tile on the opponent’s grid that haven’t

been shot.

2. Solution Set

The selected tile to be shot so that the number of

shot to sink all ships minimal.

3. Selection Function

Select a tile that have the highest probability

value based on current calculated probability

density matrix. The calculation algorithm will be

discussed more on Section V.

4. Constraint Function

Since all tile in candidate set is valid, no

constraint function is needed

5. Objective Function

Minimize the number of shots used to sink all

ships

The algorithm is defined as below:

1. Set the probability calculation mode to “hunt”

mode (more on Section V)

2. Calculate the probability density matrix.

3. Select a tile which haven’t been shot and have the

highest probability

4. Check opponents reply. If current mode is “hunt”

and the reply is “hit”, change mode to “target”.

Else if the current mode is “target”, the reply is

“sink”, and there is no more “hit” tile, change

mode to “hunt”.

5. Check whether all opponent’s ship is sunk. If yes

then finish. If not repeat to step (2).

After implementating the algorithm (including the

matrix calculation algorithm), the following are some

of the program results. Notice that the initial ship

positions are randomized.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Figure 4.1. Some result of the battleship program in

Python. Execution time under 1 second for each run.

Figure 4.2. Battleship program result (truncated) with

information of each shot done by the program.

V. PROBABILITY DENSITY MATRIX CALCULATION

ALGORITHM USING STRING MATCHING

Probability density matrix is basically a matrix that

describe each tile chance of having a part of a ship. One

of the method to calculate it is by enumerate all possible

position of every ship given the current state of the grid.

If a ship can be placed at a certain position, every tile that

coincide with the ship will have its probability value

incremented by one.

 Since all ships have a dimension of 1xL with L the

length of ship, the enumeration process can be

decomposed into a string matching problem: given

character “0” represents a tile that haven’t yet been shot

and “1” tile that have been shot, search all position of

pattern consists L character(s) “0” on a certain row or

column.

The general scheme of the calculation is defined as

below.

1. For each ship that haven’t yet sunk, do the

following.

2. Let L as current ship length

3. For each row and column in the grid, do the

following.

4. Find the position of pattern consisting L character

of “0” on current row / column, using a certain

string matching algorithm.

5. If there is no match, continue to next row /

column.

If there is a match, increase probability of each

covered tiles by one, shift the pattern to the right

and repeat to step (4).

5.1. Calculation Mode

In calculating probability density matrix, there are two

kind of mode to use, “hunt” and “target” mode. In hunt

mode, the program “hunts” a ship by shooting tiles until a

shot hit. At this point, the program interested in which tile

that have highest probability of having a part of ship.

Hence, the matrix is calculated by enumerating all ship

position on grid, as explained before.

Figure 5.1. The matrix calculated in hunt mode.

Notice the red X marks the previous miss shot.

In target mode, on the other hand, the program

previously has hit a ship, and more interested in which tile

that have highest probability of having a part of the same

ship rather than of any ship. Consequently, there are some

modification of the previous calculation algorithm.

First, instead of two, there are three types of tiles: “0”

is a free tile, “1” is a miss shot tile, and “2” is a hit shot

tile. The algorithm will find a pattern of character “0” or

“2” of length L on a certain row or column. If there is a

match on certain position, every tile that covered by the

pattern will have its probability increased by number of

“2” in the pattern.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Figure 5.2. The matrix calculated in target mode.

Notice the red X marks the previous hit shot

The general scheme of the calculation is defined as

below.

1. For each ship that haven’t yet sunk, do the

following.

2. Let L as current ship length

3. For each row and column in the grid, do the

following.

4. Find the position of pattern consisting L character

of “0” or “2” on current row / column, using a

certain string matching algorithm.

5. If there is no match, continue to next row /

column.

If there is a match, let K as the number of

character “2” in matched string. Increase

probability of each covered tiles by K, shift the

pattern to the right and repeat to step (4).

5.2. Implementation

5.2.1. Brute-Force

The brute-force implementation for both calculation

mode are quite straight forward:

1. Visit the first tile on current row / column

2. Read L tiles to the right (if row) or to the bottom

(if column) from the currently visited tiles.

3. Check whether the tiles have a “1” or not. If not,

increase the probability as explained before.

4. Visit next tile if available and repeat to step (2)

As for the complexity, brute-force implementation will

have complexity of O (pn) for each row and column,

where p is the average length of ship and n is the number

of tiles in a row / column.

5.2.2. KMP

The KMP implementation needs some tweaks for it

works. Since there is some pattern, especially for target

mode calculation, is not exact, the border function cannot

be pre-computed. Instead, the algorithm will check or

jump character depends on previous result:

1. Let Prev, the success state of previous check,

assigned as false

2. Visit the first tile on current row / column

3. Read L tiles from the currently visited tile

4. If Prev is true, skip checking the first L-1 tiles

from the current tile

5. Check whether the tiles have a “1” or not.

If yes, set N as the position of character “1”

relative from current tile

If not, increase the probability as explained before

starting from the current tile, and let N = 0

5. Visit next N + 1 tile if available and repeat to step

(2)

As for the complexity, KMP implementation will have

complexity of O (n) for each row and column, where n is

the number of tiles in a row / column.

The following is the number of checks done by both

implementation on some cases.

Figure 5.3. Number of checks on the case of no shot

have been fired before.

Figure 5.4. Number of checks on the case of 4 shots have

been fired before at (0,0), (5,0), (0,5) and (5,5)

V. CONCLUSION

After doing the implementation of both brute-force

and KMP algorithm, it can be concluded that the KMP

algorithm is better than the brute-force algorithm for

generating the probability density matrix. On the other

hand, generating probability density matrix can take much

computational time if it must be done for every turn. The

string matching algorithm can be improved by adding

dynamic programming and memoization on it. As for the

greedy algorithm, it can be concluded that the greedy

implementation is relatively simple to implement yet still

give a quite decent result.

REFERENCES

[1] Munir, Rinaldi, Diktat Kuliah Strategi Algoritma. 2009. Bandung:

Program Studi Teknik Informatika ITB.
[2] http://www.datagenetics.com/blog/december32011/, Battleship.

Accessed at December 19th 2013.

[3] http://boardgames.about.com/od/salvo/a/salvo_rules.htm, Salvo –
Battleships – Rules. Accessed at December 19th 2013.

[4] http://www.ics.uci.edu/~eppstein/161/960227.html, Knuth-Morris-

Pratt Algorithm. Accessed at December 19th 2013.

http://www.datagenetics.com/blog/december32011/
http://boardgames.about.com/od/salvo/a/salvo_rules.htm
http://www.ics.uci.edu/~eppstein/161/960227.html

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

[5] http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorit

hms/Greedy/greedyIntro.htm, Greedy Introduction. Accessed at

December 19th 2013.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Faiz Ilham Muhammad

13511080

http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm
http://www.personal.kent.edu/~rmuhamma/Algorithms/MyAlgorithms/Greedy/greedyIntro.htm

