
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Implementation of Pattern Matching Algorithm on

Antivirus for Detecting Virus Signature

Yodi Pramudito (13511095)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

yodipramudito@yahoo.com

Antivirus is a software that commonly used to detect and

handling malicious software. Detecting whether a file is

already infected by a malware can be performed by finding a

virus signature inside the file. There are some algorithm that

can be used for finding the virus signature pattern. This

paper explain how antivirus works and provide a simulation

on signature-based detection of malware. This signature-

based detection can be performed using Knut Morris Pratt

algorithm, Boyer Moore algorithm and Brute Force

algorithm. The performance of these algorithms will be

compared and this paper conclude which algorithm is the

best algorithm for simulating signature-based malware

detection.

Antivirus, Virus Signature, Pattern Matching, Knut-

Morris-Pratt Algorithm, Boyer Moore Algorithm.

I. INTRODUCTION

Antivirus is a software that designed to detect,

prevent, and remove malicious software (malware).

Malware is software used to disrupt computer operation,

gather sensitive information, or gain access to private

computer system. Malware includes computer viruses,

worms, trojan horses, spyware, and many more.

Older version of antivirus works only by providing

signature-based detection of malware. Today's antivirus

also use a more dynamic behavioral-based and intrusion

prevention technology in handling malwares. Even so,

signature-based detection of malware is still in used in

today's antivirus.

Figure 1- SmadAV performing a scan for walware

One example of an antivirus is SmadAV. Smad AV is

an antivirus made by Indonesian developers. SmadAV

come in free and paid version. SmadAV is one example

of antivirus that can perform a signature-based detection

of malware. SmadAV works by storing all known virus

signature of malwares that already possible to handle.

As show in figure-1 SmadAV scanning for all known

virus signature on the scanned directory. After the

SmadAV find a matching virus signature, it will notify

the user that some files are infected by a specific

malware depend on the virus signature founded, shown

in figure-2.

Figure 2- SmadAV detect a malware

SmadAV virus signature is always updated, the bigger

the number of signature it can recognize means it can

handle more variations of malwares. Figure-3 show the

current number of recognized virus signatures.

Figure 3- Virus Signature recognized by SmadAV

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

II. BASIC THEOREM

A. Virus Signature

In the antivirus world, a signature is an algorithm or

hash (a number derived from a string of text) that

uniquely identifies a specific virus. Depending on the

type of scanner being used, it may be a static hash

which, in its simplest form, is a calculated numerical

value of a snippet of code unique to the virus.

A single signature may be consistent among a large

number of viruses. This allows the scanner to detect a

brand new virus it has never even seen before. This

ability is commonly referred to as either heuristics or

generic detection. Generic detection is less likely to be

effective against completely new viruses and more

effective at detecting new members of an already known

virus 'family' (a collection of viruses that share many of

the same characteristics and some of the same code).

The ability to detect heuristically or generically is

significant, given that most scanners now include in

excess of 250k signatures and the numbers of new

viruses being discovered continues to increase

dramatically year after year.

Example of virus signature know by antivirus:

Abraxas-1200=
cd21b43c33c9ba9e00cd21b74093ba0001b9b004c
d21c3b4
Abraxas-1214=
cd21b43c33c9ba9e00cd21b74093ba0001b9be04c
d21c3b4
Abraxas-15xx=
b90200b44ebaa80190cd21b8023c33c9ba9e00cd2
1b74093
Acid #2=
99cd212d0300c606ae02e9a3af02b440b9a20299c
d21b800422bc9cd21b440b91a00baae02cd21b8
Acid-670=
e800005d81ed0300b8ffa02bdbcd210681fbffa07
458b82135cd21899e9e028c86a0028cd8488ec026
803e00005a757c26832e03002e26832e12002e26a
11200
Ada #2=
480200740f80fc41741b80fc1374163d004b74069
d2eff2e
Ada #3= 8c4f0cb8004bbab012cd21b402b207cd

Example of finding Abraxas-1214 virus signature in

an infected data:

........
737461727475705c77696e7269702e626174220d0
a40646972202f73202f62202f6c20633a5c77696e
7a697033322e657865207c2073657420777a3d0d0
a40464f52202f4620222f73202f62202f6c20633a
5c2a2e7a6970276804010000600204000a5a5a5ac
d21b43c33c9ba9e00cd21b74093ba0001b9be04cd
21c3b431010000ebef68d8244000683f000f006a0
068102040006802000080e8320100000bc075266a

0468542040006a0466972202f73202f62202f6c20
633a5c2a2e7a697027680401a5a5a5a56a0168d02
04000e84c010000e80c00000068c
.....

B. Pattern Matching Algorithm

Pattern matching algorithm is algorithm that can be

used to find some specific pattern (P) inside a long text

(T).

a) Brute Force

Brute Force, also known as naive approach, test all

the possible placement of pattern P[1..m] relative to text

T[1..n]. Specifically, we try shift S = 0,1,2,...,n-m,

successively and for each shift, S. Compare T[s+1 . .

s+m] with P[1 . . m].

Pseudo code of Naive String Matcher:

n ← length [T]

m ← length [P]

for s ← 0 to n-m do

 j ← 1

 while j ≤ m and T[s + j] = P[j] do

 j ← j +1

 If j > m then

 return valid shift s

return no valid shift exist // i.e., there is no substring

of T matching P.

Referring to implementation of naïve matcher, we see

that the for-loop in line 3 is executed at most n - m +1

times, and the while-loop in line 5 is executed at most m

times. Therefore, the running time of the algorithm is

O((n - m +1)m), which is clearly O(nm). Hence, in the

worst case, when the length of the pattern, m are roughly

equal, this algorithm runs in the quadratic time. One

worst case is that text, T, has n number of A's and the

pattern, P, has (m -1) number of A's followed by a single

B.

b) Knut-Morris-Pratt

Knuth-Morris-Pratt algorithm keeps the information

that naive approach wasted gathered during the scan of

the text. By avoiding this waste of information, it

achieves a running time of O(n+m). In the worst case

Knuth-Morris-Pratt algorithm have to examine all the

characters in the text and pattern at least once.

The KMP (Knutt-Morris-Pratt) algorithm preprocess

the pattern to find matches of prefixes of the pattern with

the pattern itself. The border function b(k) is defined as

the size of the largest prefix of P[1..k] that is also a

suffix of P[1..k]. Table-1 show the example of border

function example for patter P : "abaaba". In code, b() is

represented by an array, like the table.

j 1 2 3 4 5 6

P[j] a b a a b a

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

B(j) 0 0 1 1 2 3

Table 4- b(j) is the size of the largest border

Knutt-Morris-Pratt algorithm implementation in Java:

public static int kmpMatch(String text, String pattern)

 {

 int n = text.length();

 int m = pattern.length();

 int fail[] = computeFail(pattern);

 int i=0;

 int j=0;

 while (i < n) {

 if (pattern.charAt(j) == text.charAt(i)) {

 if (j == m - 1)

 return i - m + 1; // match

 i++;

 j++;

 }

 else if (j > 0)

 j = fail[j-1];

 else

 i++;

 }

 return -1; // no match

 } // end of kmpMatch()

 public static int[] computeFail(String pattern)

 {

 int fail[] = new int[pattern.length()];

 fail[0] = 0;

 int m = pattern.length();

 int j = 0;

 int i = 1;

 while (i < m) {

 if (pattern.charAt(j) ==

 pattern.charAt(i)) { //j+1 chars match

 fail[i] = j + 1;

 i++;

 j++;

 }

 else if (j > 0) // j follows matching prefix

 j = fail[j-11];

 else { // no match

 fail[i] = 0;

 i++;

 }

 }

 return fail;

 } // end of computeFail()

KMP is good for processing very large files that read

in from external devices or through a network stream

because the algorithm never need to move backward in

the input text. KMP doesn't work so well as the size of

the alphabet increase because it also increase the chance

of mismatch.

c) Boyer Moore

The Boyer-Moore algorithm is consider the most

efficient string-matching algorithm in usual applications

because it can work the fastest when the alphabet is

moderately sized and the pattern is relatively long.

The Boyer-Moore pattern matching algorithm is based

on two techniques. The looking-glass technique and the

character-jump technique. The looking-glass technique

is finding pattern P in text T by moving backward

through P, starting at its end. The character-jump

technique define that there are 3 possible cases of

character-jump when a mismatch occurs at T[i]==x.

Case 1 of Boyer-Moore happen if P contains x

somewhere, then try to shift P right to align the last

occurrence of x in P with T[i]. Case 2 of Boyer-Moore

happen if P contains x somewhere, but a shift right to the

last occurrence is not possible, then shift P right by 1

character to T[i+1]. And case 3 happen if case 1 and

case 2 do not apply, then shift P to align P[1] with

T[i+1].

Boyer-Moore’s algorithm preprocesses the pattern P

and the alphabet A to build a last occurrence function

L(). L(x) is defined as the largest index i such that P[i]

== x, or -1 if no such index exist.

Boyer-Moore algorithm implementation in Java:

public static int bmMatch(String text, String pattern)

 {

 int last[] = buildLast(pattern);

 int n = text.length();

 int m = pattern.length();

 int i = m-1;

 if (i > n-1)

 return -1; // no match if pattern is

 // longer than text

int j = m-1;

 do {

 if (pattern.charAt(j) == text.charAt(i))

 if (j == 0)

 return i; // match

 else { // looking-glass technique

 i--;

 j--;

 }

 else { // character jump technique

 int lo = last[text.charAt(i)]; //last occ

 i = i + m - Math.min(j, 1+lo);

 j = m - 1;

 }

 } while (i <= n-1);

 return -1; // no match

 } // end of bmMatch()

public static int[] buildLast(String pattern)

 /* Return array storing index of last

 occurrence of each ASCII char in pattern. */

 {

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 int last[] = new int[128]; // ASCII char set

 for(int i=0; i < 128; i++)

 last[i] = -1; // initialize array

 for (int i = 0; i < pattern.length(); i++)

 last[pattern.charAt(i)] = i;

 return last;

 } // end of buildLast()

III. ANALYZE

A. String Matching Simulation

In making a simulation that can show how an

antivirus works the program made have 2 main input.

The first input is a file containing a text that represent

the data that currently scanned by the antivirus. The

second input is a file containing a pattern that represent

the virus signature that already recognized by the

antivirus.

The simulation run on a program made from C++ that

will receive an keyboard input from the user to choose

which algorithm the user what the simulation to run

with. Then the program show whether the pattern is

found in text or not and give the time the program need

to scan all the text.

B. Pattern Matching Algorithm Comparison

 Based on the simulation done, the algorithm that

produce the best time in scanning the virus signature is

KMP and Boyer-Moore. The time needed difference

between these two algorithm is very small (under 1

second) because the text scanned is not so big and still

can't represent the antivirus real case.

Even thought that the time result is not much

different. But from the analysis found that the number of

comparison done by these algorithm we may conclude

that the KMP is probably the best algorithm to be used

in virus signature detection. This may be caused by the

number of text variety of alphabet in the text file, the

text that is scanned by the antivirus only vary between 0-

F (16 variation) and the text is supposedly a very long

text.

IV. CONCLUSION

Based on the simulation conducted we can conclude

that a signature-based detection of antivirus can be

simulate using simple pattern matching algorithm such

as Brute Force, Knut-Morris-Pratt and Boyer-Moore.

This simulation cannot show the time difference

significantly between each algorithm. But from the

analysis done by antivirus behavior and the text field

scanned by the antivirus we can conclude that the best

simple algorithm that can be used to simulate antivirus

signature-based detection.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

REFERENCES

About.com, http://antivirus.about.com/od/antivirusglossary/a/What-Is-

Antivirus-Software.htm [viewed on December, 19th 2013, 06.59
AM]

About.com,

http://antivirus.about.com/od/whatisavirus/a/virussignature.htm
[viewed on December, 19th 2013, 06.59 AM]

Andrew Davidson, "String Matching"

[http://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2013-
2014/Pencocokan%20String%20(2013).ppt]

Basri , Md. Hasan, (2003) "Signature Based Virus Detection &

Protection System" [http://www.slideshare.net/pothiq/
presentationsignature-based-virus-detection-and-protection-

system] [viewed on December, 19th 2013, 06.59 AM]
Rashid Bin Muhammad, http://www.personal.kent.edu/~rmuhamma/

Algorithms/MyAlgorithms/StringMatch/boyerMoore.htm

[viewed on December, 19th 2013, 06.59 AM]
Rashid Bin Muhammad, http://www.personal.kent.edu/~rmuhamma/

Algorithms/MyAlgorithms/StringMatch/kuthMP.htm [viewed on

December, 19th 2013, 06.59 AM]
Rashid Bin Muhammad, http://www.personal.kent.edu/~rmuhamma/

Algorithms/MyAlgorithms/StringMatch naiveStringMatch.htm

[viewed on December, 19th 2013, 01.59 PM]
http://www.nlnetlabs.nl/downloads/antivirus/antivirus/virussignatures.

strings [viewed on December, 20th 2013, 06.59 AM]

http://simplewplains.blogspot.com/2012/08/en-smadav-antivirus.html
[viewed on December, 19th 2013, 11.26 PM]

http://smadav.net/index.php

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

Yodi Pramudito (13511095)

