
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Chess Puzzle Mate in N-Moves Solver with

Branch and Bound Algorithm

Ryan Ignatius Hadiwijaya / 13511070

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511070@std.stei.itb.ac.id

Abstract—Chess is popular game played by many people

in the world. Aside from the normal chess game, there is a

special board configuration that made chess puzzle. Chess

puzzle has special objective, and one of that objective is to

checkmate the opponent within specifically number of moves.

To solve that kind of chess puzzle, branch and bound

algorithm can be used for choosing moves to checkmate the

opponent. With good heuristics, the algorithm will solve

chess puzzle effectively and efficiently.

Index Terms—branch and bound, chess, problem solving,

puzzle.

I. INTRODUCTION

Chess is a board game played between two players on

opposite sides of board containing 64 squares of

alternating colors. Each player plays with different color

of pieces; white and black pieces. But, each player has the

same 16 pieces from the start : 1 king, 1 queen, 2 rooks, 2

bishops, 2 knights, and 8 pawns.

Figure 1 - starting chess configuration

Chess always start with this pieces configuraton. The

player with the white pieces always moves first. Then,

each player make 1 move alternately until the end of the

game. Chess game will end if one of the following case

occur :

1. Any player checkmate the opponent. If this occur,

then that player will win and the opponent will

lose.

2. Any player resign / give up. If this occur, then that

player is lose.

3. Draw. Draw occur on any of the following case :

a. Stalemate. Stalemate occur when player doesn‟t

have any legal moves in his/her turn and

his/her king isn‟t in checked.

b. Both players agree to draw.

c. There are not enough pieces on the board to

force a checkmate.

d. Exact same position is repeated 3 times

e. Fifty consecutive moves with neither player has

moved a pawn or captured a piece.

One of the chess variant is chess puzzle, which is a

chess board configuration set by composer (and often

present very artificial looking positions) present to

(human) solvers with particular task to be achieved. One

of that task is to checkmate the opponent in a pre-

determined number of moves. This paper will focus on

solving chess puzzle with checkmate in pre-determined

number of moves.

II. BASIC THEORY

A. Branch and Bound Algorithm

Branch and bound algorithm is based on Breadth First

Search (BFS) algorithm with least cost search. Each node

has a value to represent cost of that node. Cost of the each

node will determine the next node to expand. Branch and

bound algorithm works as follow :

1. Put the root node on the queue. If the root contains

the solution, then the solution is found, stop.

2. If queue is empty, then there is no solution, stop.

3. If queue isn‟t empty, choose node i from the queue

which have least cost.

4. If node i contains the solution, then solution is

found, stop. If node i is not contain solution, then

expand that node and all its children. If node i

doesn‟t have a child, back to step 2.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

5. For each child j from node i, calculate cost of the

node j, and put all the children on the queue.

6. Back to step 2.

B. Moves

To solve chess problem, first we must know how each

piece moves. Each of the 6 different kinds of pieces

moves differently. Pieces cannot move through other

pieces (though the knight can jump over other pieces), and

can never move onto a square with one of their own

pieces. However, pieces can be moved to take the place of

an opponent's piece which is then captured. Pieces are

generally moved into positions where they can capture

other pieces (by landing on their square and then

replacing them), defend their own pieces in case of

capture, or control important squares in the game.

Each pieces move describe as below :

1. King

The king is the most important piece, but is one of the

weakest. The king can only move one square in any

direction - up, down, left, right, or diagonally. The king

may never move himself into check (where he could be

captured).

2. Queen

The queen is the most powerful piece. She can move in

any one straight direction - forward, backward, sideways,

or diagonally - as far as possible as long as she does not

move through any of her own pieces. And, like with all

pieces, if the queen captures an opponent's piece her move

is over.

3. Rook

The rook may move as far as it wants, but only forward,

backward, and to the sides.

4. Bishop

The bishop may move as far as it wants, but only

diagonally. Each bishop starts on one color (light or dark)

and must always stay on that color.

5. Knight

Knights move in a very different way from the other

pieces – going two squares in one direction, and then one

more move at a 90 degree angle, just like the shape of an

“L”. Knights are also the only pieces that can move over

other pieces.

6. Pawn

Pawns are unusual because they move and capture in

different ways: they move forward, but capture

diagonally. Pawns can only move forward one square at a

time, except for their very first move where they can move

forward two squares. Pawns can only capture one square

diagonally in front of them. They can never move or

capture backwards. If there is another piece directly in

front of a pawn he cannot move past or capture that piece.

C. Chess Notation

Chess has a notation to describe each of the moves.

Each of the piece has a prefix different from each other

pieces. The notation of each piece :

King – K

Queen – Q

Rook – R

Knight – N

Bishop – B

Pawn doesn‟t have prefix for its notation. This prefix is

then followed by the destination square with format

column [„A‟-„H‟] and row [„1‟-„8‟].

Example of the chess notation is :

1. e4 e5

2. Nf3 Nc6

3. Bc4 Be7

4. 0 – 0

D. Calculating the best moves

There is an easy system that most players use to keep

track of the relative value of each chess piece:

- A pawn is worth 1

- A knight is worth 3

- A bishop is worth 3

- A rook is worth 5

- A queen is worth 9

- A king is infinitely valuable

The normal chess game usually consider using this

value very much. The player can use this to make

decisions while playing, helping know when to capture,

exchange, or make other moves. So, the player will not

make a disadvantageous move.

But, this solver needs to produce moves to checkmate

the opponent. So, that value doesn‟t mean anything much.

And different approach must be made to quickly solve this

problem.

To solve this problem, basically we just need to try all

the possible moves until we find the move to checkmate

the opponent. But, this approach is too slow and needs

large memory. So, heuristic is needed for efficiency. To

make the good heuristic, we must consider the checkmate

condition of the opponent. Checkmate happens when the

opponent king is put into check and cannot get out of

check in his/her turn. There are only three ways a king can

get out of check: move out of the, block the check with

another piece, or capture the piece threatening the king.

The first heuristic is to consider move which check the

opponent first. This is because the opponent king must be

put in check to checkmate him/her. Also, from the chess

puzzle example in [], we can see that most of the solutions

check the opponent repeatedly until checkmate.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

The second heuristic is to consider move which reduce

number of legal moves of the opponent king. The

opponent king mustn‟t have any legal moves to checkmate

him/her. Fewer of legal moves of the opponent king has

mean it is more likely to reduce it to zero on the next

move.

The third heuristic is to consider move with piece order

: queen, rook, bishop, knight, pawn, king. This order is

made by strength of the pieces. It is more likely to

checkmate with queen rather than with pawn (although in

some problem, the solution needs pawn to checkmate the

opponent).

The fourth heuristic is to never move to the same board

configuration.

III. IMPLEMENTATION

A. Chess Data Structure

Figure 2 – example of chess puzzle mate in two

Before solving the problem, we need to make data

structures to represent chess board. There are some

implementation of the data structure to represent chess

board, in example :

1. 2D dimensional array or matrix of size 8 x 8 which

represent each square in chess. This matrix store

information about which piece is standing on that

square. Information stored as integer which has

meaning :

Matrix value Information

0 Empty

1 White King

2 White Queen

3 White Rook

4 White Knight

5 White Bishop

6 White Pawn

7 Black King

8 Black Queen

9 Black Rook

10 Black Knight

11 Black Bishop

12 Black Pawn

Table1 – piece representation in number

So, board in figure [2] will be represented as 8x8

array which has value :

0 0 0 8 9 0 0 7

12 11 12 12 0 0 12 12

0 12 0 0 0 0 0 4

0 0 0 2 0 0 11 0

0 0 6 0 6 0 0 0

6 0 0 0 0 0 0 0

0 6 6 0 0 6 6 6

3 0 0 0 0 3 1 0

Table 2 – board representation with 8x8 array

2. Piece List : 1D dimensional array of size 32 which

represent each piece position. The position can be

represent with two number digit, first represent the

column and second the row. Each index represent

piece in the table :

Index Piece

0 White King

1 White Queen

2 White Rook A

3 White Rook H

4 White Knight B

5 White Knight G

6 White Bishop C

7 White Bishop F

8 White Pawn A

9 White Pawn B

10 White Pawn C

11 White Pawn D

12 White Pawn E

13 White Pawn F

14 White Pawn G

15 White Pawn H

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Index Piece

16 Black King

17 Black Queen

18 Black Rook A

19 Black Rook H

20 Black Knight B

21 Black Knight G

22 Black Bishop C

23 Black Bishop F

24 Black Pawn A

25 Black Pawn B

26 Black Pawn C

27 Black Pawn D

28 Black Pawn E

29 Black Pawn F

30 Black Pawn G

31 Black Pawn H

Table 3 – piece list in number

So, board in figure [2] will represented as :

Index Position

0 71

1 45

2 11

3 61

4 86

5 00

6 00

7 00

8 13

9 22

10 32

11 34

12 54

13 62

14 72

15 82

Index Position

16 88

17 48

18 58

19 00

20 00

21 00

22 27

23 75

24 17

25 26

26 37

27 47

28 00

29 00

30 77

31 87

Table 4 – board representation with piece list

B. Branch and Bound Algorithm Implementation

To solve the problem using branch and bound

algorithm, program use heuristics as define in the theory

above. The implementation of choosing moves store on

the priority queue. Each move has a value which

calculated by each heuristic. Each move start with value =

0. From heuristic 1, add 50 value if the move check the

opponent and 100 value if the move double check the

opponent. From heuristic 2, add value of (100 – 2 *

(number of opponent king moves)
2
). From heuristic 3, if

two or more moves have the same values, then priority

queue is sorted by the value of the piece. From heuristic 4,

each move is recorded at map tree so the same moves

never considered again.

From the diagram [2] above, using above

implementation, the first move to be considered is Qg8+.

That move check the opponent so the value get +50. That

move also makes the opponent king number of move

reduce to the zero. So, that value get +100 and the final

value of that move is 150. The second move to be

considered is Ng7+ which check the opponent and reduce

number of opponent king move to 1 and get final value of

148.

From the first move, the solution then can be reached

by the second move. The example of implementation in

figure [2] is :

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Figure 3 – Initial chess problem

Figure 4 – Move 1 white

Figure 5 – Move 1 black

Figure 6 – Move 2 white

IV. ANALYSIS

A. Data Structure

With 8x8 array representation, we can know the

condition of each square. If we want to know what piece

is on that square, we can use the array with O(1)

complexity time to search. But, it has to iterate all the

square to find a piece on the board.

With piece list representation, we can know each of the

piece location with O(1) search time. But, we need to

iterate all the piece to know which piece is standing on the

square.

This paper use two of the data structures as define

above. Though it is quite waste of memory size, but using

that two data structures at once can faster the search of the

move. This is because we use each of the data structures

advantage to cover the other disadvantage. We can use

piece list to quickly determine the position of the piece we

want to consider, and use 8x8 array to quickly determine

the piece on the board to determine that piece movement

and attacking square.

The heuristic this paper use is good enough for most of

the puzzle, including all the puzzles in [3]. But, in some of

the puzzle, the first heuristic can go wrong. Because, the

solution may be not to check the enemy in the beginning.

B. Branch and Bound Algorithm

With chess puzzle example in figure [2], we can solve

that using normal BFS or Branch and Bound. With normal

BFS, there are 43 moves created on the first move. Each

of the moves generate many other moves leading to many

moves that are far from checkmating the opponent. But,

with Branch and Bound Algorithm using implementation

above, we just need to expand two nodes to reach the

solution. So, branch and bound algorithm reduce the size

of the search tree and faster the search dramatically

because the search only expand move that are more likely

to be the solution first.

V. CONCLUSION

Chess puzzle mate in n-moves can be solved effectively

end efficiently using branch and bound algorithm. The

algorithm performance is depend on the heuristic used.

Using good heuristic will make the huge difference in

search time.

REFERENCES

[1] Munir, Rinaldi. 2009. Diktat Kuliah Strategi Algoritma. Program

Studi Teknik Informatika STEI ITB.

[2] http://www.chess.com

[3] http://www.chess.com/forum/view/more-puzzles/300-checkmate-

puzzles-puzzles-1---50

[4] http://chesspuzzles.com

[5] http://chessprogramming.wikispaces.com

http://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50
http://www.chess.com/forum/view/more-puzzles/300-checkmate-puzzles-puzzles-1---50

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Ryan Ignatius / 13511070

