
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Greedy Algorithm for Electricity Distribution Solution

in Indonesia

Yogi Salomo Mangontang Pratama 13511059

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

yogi.sinaga@students.itb.ac.id

Abstract—Indonesia has a wide area and also a lot of

Resources that can be used to produce electricity power to

serve its areas. But up until now the distribution of

electricity in Indonesia is still unable to be done evenly. Not

every region in Indonesia is served with electricity and the

distribution is too focused in the big cities. This paper will

explain how computer programming can help to solve this

country’s problem. By using greedy algorithm, especially

Minimum Spanning Tree Problem, the program explained in

this paper will calculate the minimum cost of electricity

distribution in Indonesia and the path of the distribution

itself. The will prove that Greedy Algorithm is efficient

enough to solve this problem and solution of this problem is

able to be found with Computer Programming.

Index Terms—Power Plant, Minimum Spanning Tree,

Prim’s, Kruskal’s

I. INTRODUCTION

Indonesia is the biggest archipelago on Earth. With

approximately 17,000 islands scattered from Sabang

(West most) to Merauke (East most), Indonesia covered

for about 5,000 km area of the surface, making it one of

the broadest nation in the world.

Its broad territory has given Indonesia a lot of benefits.

Indonesia has a rich variety of natural resources. With

2,957 animal species and 8,000 plant species discovered,

and about 80% species still undiscovered, majority of the

wildlife around the world exist in Indonesia. This country

also has a wide variety of human culture. With about

1,340 ethnic group lives across its area, Indonesia has one

of the biggest number of tradition and culture and it makes

Indonesia more and more interesting to live in and study

about.

But beside of those benefits given by its broad and

archipelago area, Indonesia must also face some problems

that caused by the very same reason of those benefits. One

of the problems that become the main concern on this

paper is the distribution of electricity in every area across

all islands within its territory. Because as we know, being

an archipelago country means that Indonesia has a broad

area of islands and also a lot of water terrain within it.

These factors made an even electricity distribution

become a challenging problem for the government to

solve.

Table 1.1 The Electrification Table of Indonesia(1980-2013)

As described on the table above, the distribution of

electricity hasn’t been reaching every area in Indonesia

completely (75.8% in 2012). And though the percentage

is quite high, the distribution is not even yet since the

highest Electrification is in the province of the capital

city, DKI Jakarta, with 99.99% while the lowest one is in

the Papua region with only 35.89% of its area already

served with electricity. These statistics indicates that the

government is still unable to determine the most effective

method to distribute the electricity evenly.

The electricity source itself shouldn’t be any problem

since Indonesia with its wide variety of natural resources

that can be used to produce electric power. There are

about 45 power plants that is powered by water (PLTA),

air (PLTU), natural gas (PLTG), geothermal(PLTB),

Solar, Nuclear Energy(PLTN), Coal (PLTB), Renewable

Energy (or also called Bio Mass) spread across Indonesia.

The main problem now is to determine which power plant

should serve certain area so that every area in Indonesia

could receive electricity service and the total cost of

distribution is as low as possible.

This paper will explain how programming can solve

this problem. In this context, Indonesia can be represented

as a graph where the nodes will represent the power

plants, cities, villages, and all other important sites of the

country, and the edges of the graph represents the cables

and other infrastructures that connect one area to another.

The cable and infrastructures itself must have cost to build

and maintain, so the cost itself will be the weight of the

edges in the graph.

Because the main concern is to make sure every area in

the country is served with electricity, every node in the

graph must be connected with at least one node that

represents a power plant except the nodes that represent

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

the power plant itself. A site is considered connected to a

power plant if and only if there is a path which consists of

only cables from site to a power plant.

Since every city, village and other sites only need to be

connected with one power plant, the Minimum Spanning

Tree Problem is most accurate model to this problem. The

nature of Minimum Spanning Tree Problem is to select a

subset of Edges in a graph such that the graph is still

connected and the total weight of the selected Edges is

minimal. This is exactly what the problem of electricity

distribution needed. Minimum Spanning Tree Problems

can be solved using several well-known Greedy

Algorithms like Prim’s and Kruskal’s which are going to

be explained in this paper.

II. SOME THEORIES

II.I GREEDY ALGORITHM

The word Greedy itself is an adjective which means

“desiring excessively”. The principle of Greedy is to form

the solution step by step. In every step, there exists a lot of

options that need to be explored. So in every step a best

decision must be made to determine the best option. In

every step a local optimum solution must be formed. By

assuming that the rest of the step will lead to global

optimum solution.

The elements of Greedy Algorithm are:

1. Candidate set (C)

The set of possible values that will be used as the

value to determine the optimum solution.

2. Solution set (S)

The combination set of candidates that fulfill the

requirement of current problem.

3. Selection Function

The function used to determine the most optimum

solution to be picked from the rest of candidate

value.

4. Feasibility Function

The function used to check whether current

solution to be picked still fulfilling the requirement

of current problem.

5. Objective Function

The function used to make sure that the solution to

be picked is the most optimum.

The generic scheme of Greedy Algorithm is explained

in the following pseudo-code:

function greedy(input C:

candidate_set)? Candidate_set

{ Return the solution of Optimum

Decision of Greedy Algorithm

 Input: candidate_set C

 Output: soltion_set with relevant

type with candidate_set

}

Declaration

 x : candidate

 S : candidate_set

Algorithm:

 S <- {} { Initialization of S

with empty }

 while (not SOLUTION(S)) and (C

!= {}) do

 x <- SELECTION(C) {

Choose a candidate from C}

 C <- C - {x} { Reduce

the candidate set by one element }

 if FEASIBLE(S AND {x}) then

 S <- S AND {x}

 endif

 endwhile

{SOLUTION(S) or C = {} }

if SOLUSI(S) then

 return S

else

 write(’No Solution’)

endif

Global Optimum Solution is not always the most

optimum solution. It is only sub-optimum or pseudo-

optimum. There are two reasons to support this statement:

1. Greedy Algorithm is not operating in every

possible solution alternatives that exist.

There is a possibility where a solution that is not

the most optimum in a step will produce the global

solution in the following steps.

2. There consists different Selection Functions, so

that we need to choose the right function to

produce optimum solution.

If the absolute best solution is not required, then

Greedy Algorithm is often useful to produce an

approximation solution because Greedy Algorithm is quite

simple compared than another algorithms. Greedy

Algorithm is also useful when local optimum solution can

be reassured as part of global optimum solution.

II.II MINIMUM SPANNING TREE

A spanning tree of a graph is a sub-graph that is

a tree and connects all the vertices together. A single

graph can have many different spanning trees. A graph

can also have a weight at each edge, which is a number

representing how unfavorable it is. Those weights are

used to compute the total cost of a spanning tree by

computing the sum of the weights of the edges in that

spanning tree.

A Minimum Spanning Tree (MST) or Minimum

Weight Spanning tree is a spanning tree with cost less

than or equal to the cost of every other spanning tree.

More generally, any undirected graph (not necessarily

connected) has a Minimum Spanning Forest, which is a

union of minimum spanning trees for its connected

components.

http://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
http://en.wikipedia.org/wiki/Tree_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Image 2.1 The Example Of Minimum Spanning Tree of a Graph.

Source: www.wikipedia.org

Minimum Spanning Tree (MST) has many practical

applications. For example, we can model a problem of

building road networks in remote villages as an MST

Problem. The Vertices are the villages. The edges are the

potential roads that may be built between those villages.

The cost of building a road that connects village i and j is

the weight of edge(i, j).

This MST problem can be solved with several well-

known algorithms i.e. Prim’s and Kruskal’s, both are

going to be explained and used as experiment in this

paper.

II.IV PRIM’S ALGORITHM

Robert Clay Prim’s Algorithm fist takes a starting

vertex, flags it as ‘taken’, and en queue a pair of

information into a priority queue. The weight(w) and the

other end point (u) of the chosen edge that is not taken

yet. Those pairs are sorted in the priority queue based on

the increasing weight, and if more than one pair has

similar weight, sorted by increasing vertex number. Then

Prim’s Algorithm greedily select the pair in front of the

priority queue – which has the minimum weight w – if the

end point of the edge has not been taken before. This

validation must be done to prevent a cycle. If the pair is

valid, then the weight w is added into the MST cost, and

marked the selected vertices as ‘taken’. This process is

repeated until the priority queue is empty.

The implementation of Prim’s Algorithm in a pseudo-

code is explained in the following section.

Prim(G, w, s)

{Input: undirected connected weighted

graph G = (V,E) in adj list

representation,

source vertex s in V

Output: p[1..|V|], representing the

set of edges composing an MST of G}

 for each v in V

 color(v) <- WHITE

 key(v) <- infinity

 p(v) <- NIL

 Q <- empty list // Q keyed by

key[v]

 color(s) <- GRAY

 Insert(Q, s)

 key(s) <- 0

 while Q != empty

 u <- Extract-Min(Q)

 for v in Adj[u]

 if color(v) = WHITE

 then color(v)

<- GRAY

 Insert(Q,v)

 key(v) <-

w(u,v)

 p(v) <- u

 elseif color(v) =

GRAY

 then if key(v)

> w(u,v)

 then key(v) <- w(u,v)

 p(v) <- u

 color(v) <- BLACK

 return(p)

Prim’s Algorithm has one key problem that need to be

solved, which is : How to Efficiently Find The Crossing

Edge of Minimal Weight ?

There are two implementations that can be used to

solve the question:

1. Lazy implementation

Use a priority queue to hold the crossing edges and

find one of minimal weight. Each time an edge is

added to the tree, also add a vertex to the tree. To

maintain the set of crossing edges, add all edges

from that vertex to any non-tree vertex to the

priority queue. Any edge connecting the vertex just

added to a tree vertex that is already on the priority

queue now becomes ineligible (it is no longer a

crossing edge because it connects two tree

vertices). The lazy implementation leaves such

edges on the priority queue, deferring the

ineligibility test to when they are removed.

2. Eager Implementation

To improve the lazy implementation of Prim's

algorithm, delete ineligible edges from the priority

queue, so that the priority queue contains only the

crossing edges. The key is to note that the only

interest is in the minimal edge from each non-tree

vertex to a tree vertex. When adding a vertex v to

the tree, the only possible change with respect to

each non-tree vertex w is that adding v brings w

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

closer than before to the tree. In short, keeping on

the priority queue all of the edges from w to

vertices tree—we just need to keep track of the

minimum-weight edge and checking whether the

addition of v to the tree necessitates that is updated

that minimum (because of an edge v-w that has

lower weight), which can be done while processing

each edge in s adjacency list. In other words, the

maintaining on the priority queue just one edge for

each non-tree vertex: the shortest edge that

connects it to the tree.

The time complexity is O(V log V + E log V) = O(E

log V), making it the same as Kruskal's algorithm. The

following image gives visual explanation about how

Prim’s Algorithm works to make a Minimum Spanning

Tree of a Graph.

Image 2.2 The Animation of Prim’s Algorithm for an MST

Problem. Source: vis.berkeley.edu

II.IV KRUSKAL’S ALGORITHM

Joseph Bernard Kruskal Jr.’s algorithm first sort E

edges based on non-decreasing weight in O(E log E). This

can be easily done using priority queue (or alternatively,

use vector & sort). Then, it greedily tries to add O(E)

edges with minimum costs to the solution as long as such

addition does not form a cycle. This cycle check can be

done easily using Union-Find Disjoint Sets.

The implementation of Kruskal’s Algorithm in a

pseudo-code is explained below.

KRUSKAL(G):

 A = Ø

 foreach v MemberOf G.V:

 MAKE-SET(v)

 foreach (u, v) ordered by weight(u,

v), increasing:

 if FIND-SET(u) ? FIND-SET(v):

 A = A JOIN {(u, v)}

 UNION(u, v)

return A

Given E as the number of edges in the graph and V is the

number of vertices, Kruskal's algorithm can be shown to

run in O(E log E) time, or equivalently, O(E log V) time,

all with simple data structures. These running times are

equivalent because:

 E is at most V
2
 and log logV

2
 = 2 log Vso the

complexity is O(log V).

 Each isolated vertex is a separate component of

the minimum spanning forest. If we ignore

isolated vertices we obtain V ≤ E+1, so

complexity is O(log E).

We can achieve this bound as follows:

1. Sort the edges by weight using a comparison

sort in O(E log E) time;

2. Remove an edge with minimum weight

from Graph(S) to operate in constant time.

3. Use Disjoint set Data Structure (Union & Find)

to keep track of which vertices are in which

components. This operation has O(E)

complexity. There consist two 'find' operations

and possibly one union for each edge. Even a

simple disjoint-set data structure such as disjoint-

set forests with union by rank can perform O(E)

operations in O(E log V) time. Thus the total

time is O (E log E) = O(E log V).

Provided that the edges are either already sorted or can

be sorted in linear time (for example with counting

sort or radix sort), the algorithm can use more

sophisticated disjoint-set data structure to run

in O(E α(V)) time, where α is the extremely slowly

growing inverse of the single-valued Ackermann function.

The following image gives visual explanation about

how Kruskal’s Algorithm works to make a Minimum

Spanning Tree of a Graph.

http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Binary_logarithm
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Ackermann_function

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Image 2.3 The Animation of Kruskal’s Algorithm for an MST

Problem. Source: Halim, Steven. Increasing Your Lower Bound 1st

Edition

III. IMPLEMENTATION

As mentioned in the previous part of this paper, the

main concern of the problem is to determine which Power

Plant should serve a certain area so that the cost of cable

and infrastructure maintenance is as low as possible.

To solve the problem, the first task that is need to be

done is to represent Indonesia as a graph where the area

(cities, villages, power plant, etc.) presented as vertices,

while the cable and another infrastructures to connect

each area represented with edges. The weight of each

edge is measured by the cost that is needed to build and

maintain every infrastructure.

Every area (cities, villages, power plant, etc.) only need

to be connected to one Power Plant or another area that is

already connected with Electricity. But Power Plant is an

exception, since a Power Plant doesn’t need to be

connected to another Power Plant.

This characteristic of Problem makes Minimum

Spanning Tree Problem the best Abstraction of The

Electricity Distribution Problem in Indonesia. Since the

nature of Minimum Spanning Tree is to connect every

vertices in the graph with only one edge for each with the

minimum total weight of the edges.

But a simple modification need to be done because

there are some vertices that must be prevented from being

connected one to another, which is the vertices of Power

Plant. To outsmart this problem, the graph must be

modified with these steps:

1. Construct a Graph that is similar with the Original

Graph of Indonesia (for example Graph G’).

2. Add an additional vertex for a dummy (for

example x).

3. Add edges from x to every Power Plant that exists

in the graph with weight of zero (0).

4. Solve the Graph with Prim’s or Kruskal’s

Algorithm as a normal Minimum Spanning Tree.

The reason of the addition a dummy vertex and edges

with weight of zero is to make sure a Power Plant is not

connected one to another without affecting the total cost

of The Minimum Spanning Tree. The effect of this

addition will be explained more clearly with an example

in the following section of this paper.

The pseudo-code of solution offered by this paper is as

following:

A. Prim’s Algorithm

process(int vtx)

{Input : Number of Vertex that want

to be processed

Output : Priority Queue Added with

edges of the vertex

}

 taken[vtx] <- 1

 for each v connected to 0

 pair_integer tempPair <-

make_pair(vtx, v)

 if NOT taken[0] THEN

 push(pq, -

tempPair.second, -tempPair.first)

PrimPowerPlant()

{Input: Three Integers denoting the

number of sites, the number of

cables, the number of power plants

Output: The Cables that use to

connect one site to another and the

total cost}

 integer site, cable, nPlant,

plant

 integer src, dst, weight,

totalCost

 graph Indonesia

 vector integer taken

 priority_queue pq

 INPUT (site, cable, plant)

 for i = 0, i < nPlant

 INPUT(plant) {Input

Number of Nodes which is Power Plant}

 Indonesia <- MAKEEDGE(0,

plant, 0)

 for i = 0, i < cable

 INPUT(src, dst, weight) {

Input Another Sites }

 Indonesia <-

MAKEEDGE(src, dst, weight)

 for each v in Indonesia

 color(v) <- WHITE

 key(v) <- infinity

 p(v) <- NIL

 ASSIGN(taken, 0, 0) // Assign

first Vertex to Vector

 process(0)

 totalCost <- 0

 WHILE NOT EMPTY(pq) DO

 pair_integer front <-

top(pq)

 integer u <- -

front.second, w <- -front.first

 if NOT taken(u) THEN

 WRITEPATH(u,w)

 totalCost <-

totalCost + w

 process(u)

 WRITE(totalCost)

B. Kruskal’s Algorithm

KruskalPowerPlant()

{Input: Three Integers denoting the

number of sites, the number of cables,

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

the number of power plants

Output: The Cables that use to connect

one site to another and the total

cost}

 integer site, cable, nPlant,

plant

 integer src, dst, weight,

totalCost

 vector_of_pair_integer Indonesia

 INPUT (site, cable, plant)

 for i = 0, i < nPlant

 INPUT(plant) {Input Number

of Nodes which is Power Plant}

 Indonesia <- MAKEEDGE(0,

plant, 0)

 for i = 0, i < cable

 INPUT(src, dst, weight) {

Input Another Sites }

 Indonesia <- MAKEEDGE(src,

dst, weight)

 totalCost <- 0

 SORT(Indonesia)

 WRITE(totalCost)

 INITSET(V)

 for i = 0, i < SIZE(Indonesia)

 pair_of_integer_pair front

<- Indonesia[i]

 if NOT ISSAMESET(front)

THEN

 WRITEPATH(front)

 totalCost <-

totalCost + front.first

 UNIONSET(front)

 WRITE(totalCost)

IV. EXPERIMENTS

To check the validity of the program that already

explained in the previous section, a simple experiment

will be done in this section of paper. Let’s say that there

are nine areas in Indonesia and three of them are Power

Plants as described in the following image:

Image 4.1 The abstraction of Area In Indonesia with 9 areas and 3

Power Plants

The input to the program is:

1 2 5

1 3 2

2 3 5

3 5 4

2 5 7

2 4 4

4 5 5

5 7 10

4 7 4

4 6 6

6 8 3

6 7 11

7 8 8

7 9 10

The illustration of the solution of this example is

described in the following image:

Image 4.2 The abstraction of Solution of the Example Problem

X is a dummy edge to connect with all the power plants

avoiding any power plant to connect with each other.

The result of the program itself for Prim’s Algorithm is

as following:

Image 4.3 Screenshot of Compile Result of Prim’s Algorithm

The result of the program for Kruskal’s Algorithm:

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Image 4.4 Screenshot of Compile Result of Kruskal’s Algorithm

V. ALGORITHM ANALYSIS

For the algorithms that are used in this paper, there are

some analysis to determine whether the algorithm is

effective from aspect of complexity and also the cost that

is produced by the program.

From the aspect of complexity, as explained in the

previous section of this paper, the complexity of the

program is O(log n) since this program is implementing

Prim’s and Kruskal’s Algorithm. This is still the most

efficient method acknowledged until this paper is done.

As comparison the brute force algorithm has O (n!)

complexity which is so much more inefficient than the

algorithm used in this paper.

From the aspect of Total Weight of the Minimum

Spanning Tree produced, or in this problem described as

the total cost of maintenance, for every test case that is

given to the program, the program could always return the

most minimum value of the Spanning Tree. The example

in this program is one of the test cases that is solved

successfully by the program.

But this program is simplifying the problem of

Electronic Distribution in Indonesia into a graph that only

concern about the cost of maintenance. While in the real

life problem, there are a lot of factor to be considered

when government want to build or serve an area with a

certain Power Plant. Those factors are the condition of

nature, ethics in the certain area, the law that is

implemented in the certain area, and many more. Those

factors can also be calculated to be the weight of the

graph, so this algorithm is still capable to be implemented

in the real life problem with some more modifications.

VI. CONCLUSION

Greedy with Prim’s and Kruskal’s Algorithm is suitable

to determine which Power Plant to serve a certain area in

Indonesia with the lowest maintenance cost. By using

Minimum Spanning Tree, the path of the electricity

distribution can be analyzed to determine whether the path

is the most efficient path or not. After all the paths are

determined, the total cost can be calculated. But the cost

of the maintenance must be pre-computed before the

program is executed, and a lot of factors must be

considered in the calculation of the cost itself.

VII. ACKNOWLEDGMENT

This paper is made to fulfill the assignment of IF2211. The

writer say thank you to Mister Rinaldi Munir and Mrs

Masayu as Lecturer in this Subject that is always guide the

writer in the process of finishing this paper.

The writer is also want to express the gratitude to every

person that is helping the making of this paper. The writer

want to say thank you to the parent, to D Brotherhood, to

another friends. Because of all of you this paper can be done

in the right time and in a good form.

REFERENCES

[1] Munir, Rinaldi. Diktat Strategi Algoritma. 2009. Bandung.

[2] Halim, Steven & Halim, Felix. Competitive Programming 2. This

Increases the Lower Bound of Programming Contest. Again.

2012. Singapore.

[3] www.satwa.org accessed at: Tuesday, 17 December 2013 19.00

[4] www.cs.auckland.ac.nz accessed at: Thursday, 19 December 2013

20.00

[5] www.vis.berkeley.edu accessed at: Thursday, 19 December 2013

21.00

[6] www.esdm.go.id accessed at: Friday, 20 December 2013 10.00

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Yogi Salomo Mangontang Pratama

http://www.satwa.org/
http://www.cs.auckland.ac.nz/
http://www.vis.berkeley.edu/
http://www.esdm.go.id/

