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Abstract—Indonesia has a wide area and also a lot of 

Resources that can be used to produce electricity power to 

serve its areas. But up until now the distribution of 

electricity in Indonesia is still unable to be done evenly. Not 

every region in Indonesia is served with electricity and the 

distribution is too focused in the big cities. This paper will 

explain how computer programming can help to solve this 

country’s problem. By using greedy algorithm, especially 

Minimum Spanning Tree Problem, the program explained in 

this paper will calculate the minimum cost of electricity 

distribution in Indonesia and the path of the distribution 

itself. The will prove that Greedy Algorithm is efficient 

enough to solve this problem and solution of this problem is 

able to be found with Computer Programming. 

 

Index Terms—Power Plant, Minimum Spanning Tree, 

Prim’s, Kruskal’s  

 

 

I.   INTRODUCTION 

Indonesia is the biggest archipelago on Earth. With 

approximately 17,000 islands scattered from Sabang 

(West most) to Merauke (East most), Indonesia covered 

for about 5,000 km area of the surface, making it one of 

the broadest nation in the world. 

Its broad territory has given Indonesia a lot of benefits. 

Indonesia has a rich variety of natural resources. With 

2,957  animal species and 8,000  plant species discovered, 

and about 80% species still undiscovered, majority of the 

wildlife around the world exist in Indonesia. This country 

also has a wide variety of human culture. With about 

1,340 ethnic group lives across its area, Indonesia has one 

of the biggest number of tradition and culture and it makes 

Indonesia more and more interesting to live in and study 

about. 

But beside of those benefits given by its broad and 

archipelago area, Indonesia must also face some problems 

that caused by the very same reason of those benefits. One 

of the problems that become the main concern on this 

paper is the distribution of electricity in every area across 

all islands within its territory. Because as we know, being 

an archipelago country means that Indonesia has a broad 

area of islands and also a lot of water terrain within it. 

These factors made an even electricity distribution 

become a challenging problem for the government to 

solve. 

 

 
Table 1.1 The Electrification Table of Indonesia(1980-2013) 

 

As described on the table above, the distribution of 

electricity hasn’t been reaching every area in Indonesia 

completely (75.8% in 2012). And though  the percentage 

is quite high, the distribution is not even yet since the 

highest Electrification is in the province of the capital 

city, DKI Jakarta, with 99.99% while the lowest one is in 

the Papua region with only 35.89% of its area already 

served with electricity. These statistics indicates that the 

government is still unable to determine the most effective 

method to distribute the electricity evenly. 

The electricity source itself shouldn’t be any problem 

since Indonesia with its wide variety of natural resources 

that can be used to produce electric power. There are 

about 45 power plants that is powered by water (PLTA), 

air (PLTU), natural gas (PLTG),  geothermal(PLTB), 

Solar, Nuclear Energy(PLTN), Coal (PLTB), Renewable 

Energy (or also called Bio Mass) spread across Indonesia. 

The main problem now is to determine which power plant 

should serve certain area so that every area in Indonesia 

could receive electricity service and the total cost of 

distribution is as low as possible. 

This paper will explain how programming can solve 

this problem. In this context, Indonesia can be represented 

as a graph where the nodes will represent the power 

plants, cities, villages, and all other important sites of the 

country, and the edges of the graph represents the cables 

and other infrastructures that connect one area to another. 

The cable and infrastructures itself must have cost to build 

and maintain, so the cost itself will be the weight of the 

edges in the graph. 

Because the main concern is to make sure every area in 

the country is served with electricity, every node in the 

graph must be connected with at least one node that 

represents a power plant except the nodes that represent 
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the power plant itself. A site is considered connected to a 

power plant if and only if there is a path which consists of 

only cables from site to a power plant. 

Since every city, village and other sites only need to be 

connected with one power plant, the Minimum Spanning 

Tree Problem is most accurate model to this problem. The 

nature of Minimum Spanning Tree Problem is to select a 

subset of Edges in a graph such that the graph is still 

connected and the total weight of the selected Edges is 

minimal. This is exactly what the problem of electricity 

distribution needed. Minimum Spanning Tree Problems 

can be solved using several well-known Greedy 

Algorithms like Prim’s and Kruskal’s which are going to 

be explained in this paper. 

 

II.  SOME THEORIES 

II.I GREEDY ALGORITHM 

 

The word Greedy itself is an adjective which means 

“desiring excessively”. The principle of Greedy is to form 

the solution step by step. In every step, there exists a lot of 

options that need to be explored. So in every step a best 

decision must be made to determine the best option. In 

every step a local optimum solution must be formed. By 

assuming that the rest of the step will lead to global 

optimum solution. 

The elements of Greedy Algorithm are: 

1. Candidate set ( C ) 

The set of possible values that will be used as the 

value to determine the optimum solution. 

2. Solution set ( S ) 

The combination set of candidates that fulfill the 

requirement of current problem. 

3. Selection Function 

The function used to determine the most optimum 

solution to be picked from the rest of candidate 

value. 

4. Feasibility Function 

The function used to check whether current 

solution to be picked still fulfilling the requirement 

of current problem. 

5. Objective Function 

The function used to make sure that the solution to 

be picked is the most optimum. 

 

The generic scheme of Greedy Algorithm is explained 

in the following pseudo-code: 

 
function greedy(input C: 

candidate_set)? Candidate_set 

{ Return the solution of Optimum 

Decision of Greedy Algorithm 

  Input: candidate_set C 

  Output: soltion_set with relevant 

type with candidate_set 

}  

Declaration 

    x : candidate 

    S : candidate_set 

 

Algorithm: 

 S <- {}   { Initialization of S 

with  empty } 

 while (not SOLUTION(S)) and (C 

!= {} ) do  

       x <- SELECTION(C)        { 

Choose a candidate from C} 

       C <- C - {x}           { Reduce 

the candidate set by one element } 

 if FEASIBLE(S AND {x}) then 

      S <- S AND {x} 

      endif 

     endwhile 

{SOLUTION(S) or C = {} }      

 

if SOLUSI(S) then 

   return S 

else 

   write(’No Solution’) 

endif 

 

Global Optimum Solution is not always the most 

optimum solution. It is only sub-optimum or pseudo-

optimum. There are two reasons to support this statement: 

1. Greedy Algorithm is not operating in every 

possible solution alternatives that exist. 

There is a possibility where a solution that is not 

the most optimum in a step will produce the global 

solution in the following steps. 

2. There consists different Selection Functions, so 

that we need to choose the right function to 

produce optimum solution. 

 

If the absolute best solution is not required, then 

Greedy Algorithm is often useful to produce an 

approximation solution because Greedy Algorithm is quite 

simple compared than another algorithms. Greedy 

Algorithm is also useful when local optimum solution can 

be reassured as part of global optimum solution. 

 

II.II  MINIMUM SPANNING TREE 

 

A spanning tree of a graph is a sub-graph that is 

a tree and connects all the vertices together. A single 

graph can have many different spanning trees. A graph 

can also have a weight at each edge, which is a number 

representing how unfavorable it is. Those weights are 

used to compute the total cost of a spanning tree by 

computing the sum of the weights of the edges in that 

spanning tree. 

A Minimum Spanning Tree (MST) or Minimum 

Weight Spanning tree is a spanning tree with cost less 

than or equal to the cost of every other spanning tree. 

More generally, any undirected graph (not necessarily 

connected) has a Minimum Spanning Forest, which is a 

union of minimum spanning trees for its connected 

components. 

http://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
http://en.wikipedia.org/wiki/Glossary_of_graph_theory#Subgraphs
http://en.wikipedia.org/wiki/Tree_graph
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)
http://en.wikipedia.org/wiki/Connected_component_(graph_theory)
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Image 2.1 The Example Of Minimum Spanning Tree of a Graph. 

Source: www.wikipedia.org 

 

Minimum Spanning Tree (MST) has many practical 

applications. For example, we can model a problem of 

building road networks in remote villages as an MST 

Problem. The Vertices are the villages. The edges are the 

potential roads that may be built between those villages. 

The cost of building a road that connects village i and j is 

the weight of edge(i, j). 

This MST problem can be solved with several well-

known algorithms i.e. Prim’s and Kruskal’s, both are 

going to be explained and used as experiment in this 

paper. 

 

II.IV  PRIM’S ALGORITHM 

 

Robert Clay Prim’s Algorithm fist takes a starting 

vertex, flags it as ‘taken’, and en queue a pair of 

information into a priority queue. The weight(w) and the 

other end point (u) of the chosen edge that is not taken 

yet. Those pairs are sorted in the priority queue based on 

the increasing weight, and if more than one pair has 

similar weight, sorted by increasing vertex number. Then 

Prim’s Algorithm greedily select the pair in front of the 

priority queue – which has the minimum weight w – if the 

end point of the edge has not been taken before. This 

validation must be done to prevent a cycle. If the pair is 

valid, then the weight w is added into the MST cost, and 

marked the selected vertices as ‘taken’. This process is 

repeated until the priority queue is empty. 

The implementation of Prim’s Algorithm in a pseudo-

code is explained in the following section. 

 
Prim(G, w, s) 

{Input: undirected connected weighted 

graph G = (V,E) in adj list 

representation, 

source vertex s in V 

Output: p[1..|V|], representing the 

set of edges composing an MST of G} 

 

 for each v in V 

  color(v) <- WHITE 

  key(v) <- infinity 

  p(v) <- NIL 

 Q <- empty list // Q keyed by 

key[v] 

 color(s) <- GRAY 

 Insert(Q, s) 

 key(s) <- 0 

 while Q != empty 

  u <- Extract-Min(Q) 

  for v in Adj[u] 

   if color(v) = WHITE 

    then color(v) 

<- GRAY 

    Insert(Q,v) 

    key(v) <- 

w(u,v) 

    p(v) <- u 

   elseif color(v) = 

GRAY 

    then if key(v) 

> w(u,v) 

     

 then key(v) <- w(u,v) 

      

 p(v) <- u 

  color(v) <- BLACK 

 return(p) 

 

 

Prim’s Algorithm has one key problem that need to be 

solved, which is : How to Efficiently Find The Crossing 

Edge of Minimal Weight ? 

There are two implementations that can be used to 

solve the question: 

1. Lazy implementation 

Use a priority queue to hold the crossing edges and 

find one of minimal weight. Each time an edge is 

added to the tree, also add a vertex to the tree. To 

maintain the set of crossing edges, add all edges 

from that vertex to any non-tree vertex to the 

priority queue. Any edge connecting the vertex just 

added to a tree vertex that is already on the priority 

queue now becomes ineligible (it is no longer a 

crossing edge because it connects two tree 

vertices). The lazy implementation leaves such 

edges on the priority queue, deferring the 

ineligibility test to when they are removed. 

 

2. Eager Implementation 

To improve the lazy implementation of Prim's 

algorithm, delete ineligible edges from the priority 

queue, so that the priority queue contains only the 

crossing edges. The key is to note that the only 

interest is in the minimal edge from each non-tree 

vertex to a tree vertex. When adding a vertex v to 

the tree, the only possible change with respect to 

each non-tree vertex w is that adding v brings w 
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closer than before to the tree. In short, keeping on 

the priority queue all of the edges from w to 

vertices tree—we just need to keep track of the 

minimum-weight edge and checking whether the 

addition of v to the tree necessitates that is updated  

that minimum (because of an edge v-w that has 

lower weight), which can be done while processing 

each edge in s adjacency list. In other words, the 

maintaining on the priority queue just one edge for 

each non-tree vertex: the shortest edge that 

connects it to the tree. 

 

The time complexity is  O(V log V + E log V) = O(E 

log V), making it the same as Kruskal's algorithm. The 

following image gives visual explanation about how 

Prim’s Algorithm works to make a Minimum Spanning 

Tree of a Graph. 

  

 
Image 2.2 The Animation of Prim’s Algorithm for an MST 

Problem. Source: vis.berkeley.edu 

 

 

 

II.IV  KRUSKAL’S ALGORITHM 

 

Joseph Bernard Kruskal Jr.’s algorithm first sort E 

edges based on non-decreasing weight in O(E log E). This 

can be easily done using priority queue (or alternatively, 

use vector & sort). Then, it greedily tries to add O(E) 

edges with minimum costs to the solution as long as such 

addition does not form a cycle. This cycle check can be 

done easily using Union-Find Disjoint Sets. 

The implementation of Kruskal’s Algorithm in a 

pseudo-code is explained below. 

 
KRUSKAL(G): 

 A = Ø 

 foreach v MemberOf G.V: 

   MAKE-SET(v) 

 foreach (u, v) ordered by weight(u, 

v), increasing: 

    if FIND-SET(u) ? FIND-SET(v): 

       A = A JOIN {(u, v)} 

       UNION(u, v) 

return A 

 

Given E as the number of edges in the graph and V is the 

number of vertices, Kruskal's algorithm can be shown to 

run in O(E log E) time, or equivalently, O(E log V) time, 

all with simple data structures. These running times are 

equivalent because: 

 E is at most V
2
 and log logV

2
 = 2 log Vso the 

complexity is O(log V). 

 Each isolated vertex is a separate component of 

the minimum spanning forest. If we ignore 

isolated vertices we obtain V ≤ E+1, so 

complexity is O(log E). 

We can achieve this bound as follows:  

1. Sort the edges by weight using a comparison 

sort in O(E log E) time; 

2. Remove an edge with minimum weight 

from Graph(S) to operate in constant time. 

3. Use Disjoint set Data Structure  (Union & Find) 

to keep track of which vertices are in which 

components. This operation has O(E) 

complexity. There consist two 'find' operations 

and possibly one union for each edge. Even a 

simple disjoint-set data structure such as disjoint-

set forests with union by rank can perform O(E) 

operations in O(E log V) time. Thus the total 

time is O (E log E) = O(E log V). 

Provided that the edges are either already sorted or can 

be sorted in linear time (for example with counting 

sort or radix sort), the algorithm can use more 

sophisticated disjoint-set data structure to run 

in O(E α(V)) time, where α is the extremely slowly 

growing inverse of the single-valued Ackermann function. 

The following image gives visual explanation about 

how Kruskal’s Algorithm works to make a Minimum 

Spanning Tree of a Graph. 

 

http://en.wikipedia.org/wiki/Big-O_notation
http://en.wikipedia.org/wiki/Binary_logarithm
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Counting_sort
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Disjoint-set_data_structure
http://en.wikipedia.org/wiki/Ackermann_function
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Image 2.3 The Animation of Kruskal’s Algorithm for an MST 

Problem. Source: Halim, Steven. Increasing Your Lower Bound 1st 

Edition 

 

III.   IMPLEMENTATION 

As mentioned in the previous part of this paper, the 

main concern of the problem is to determine which Power 

Plant should serve a certain area so that the cost of cable 

and infrastructure maintenance is as low as possible. 

To solve the problem, the first task that is need to be 

done is to represent Indonesia as a graph where the area 

(cities, villages, power plant, etc.) presented as vertices, 

while the cable and another infrastructures to connect 

each area represented with edges. The weight of each 

edge is measured by the cost that is needed to build and 

maintain every infrastructure. 

Every area (cities, villages, power plant, etc.) only need 

to be connected to one Power Plant or another area that is 

already connected with Electricity. But Power Plant is an 

exception, since a Power Plant doesn’t need to be 

connected to another Power Plant. 

This characteristic of Problem makes Minimum 

Spanning Tree Problem the best Abstraction of The 

Electricity Distribution Problem in Indonesia. Since the 

nature of Minimum Spanning Tree is to connect every 

vertices in the graph with only one edge for each with the 

minimum total weight of the edges. 

But a simple modification need to be done because 

there are some vertices that must be prevented from being 

connected one to another, which is the vertices of Power 

Plant. To outsmart this problem, the graph must be 

modified with these steps: 

1. Construct a Graph that is similar with the Original 

Graph of Indonesia (for example Graph G’). 

2. Add an additional vertex for a dummy (for 

example x). 

3. Add edges from x to every Power Plant that exists 

in the graph with weight of zero (0). 

4. Solve the Graph with Prim’s or Kruskal’s 

Algorithm as a normal Minimum Spanning Tree. 

 

The reason of the addition a dummy vertex and edges 

with weight of zero is to make sure a Power Plant is not 

connected one to another without affecting the total cost 

of The Minimum Spanning Tree. The effect of this 

addition will be explained more clearly with an example 

in the following section of this paper. 

The pseudo-code of solution offered by this paper is as 

following: 

 

A. Prim’s Algorithm 

process(int vtx) 

{Input : Number of Vertex that want 

to be processed 

Output : Priority Queue Added with 

edges of the vertex 

} 

 taken[vtx] <- 1 

 for each v connected to 0 

  pair_integer tempPair <- 

make_pair(vtx, v) 

  if NOT taken[0] THEN 

   push( pq, -

tempPair.second, -tempPair.first ) 

    

PrimPowerPlant() 

{Input: Three Integers denoting the 

number of sites, the number of 

cables, the number of power plants 

Output: The Cables that use to 

connect one site to another and the 

total cost} 

  

 integer site, cable, nPlant, 

plant 

 integer src, dst, weight, 

totalCost 

 graph Indonesia 

 vector integer taken 

 priority_queue pq 

  

 INPUT (site, cable, plant) 

 for i = 0, i < nPlant 

  INPUT(plant) {Input 

Number of Nodes which is Power Plant} 

  Indonesia <- MAKEEDGE(0, 

plant, 0) 

 for i = 0, i < cable 

  INPUT(src, dst, weight) { 

Input Another Sites } 

  Indonesia <- 

MAKEEDGE(src, dst, weight) 

 for each v in Indonesia 

  color(v) <- WHITE 

  key(v) <- infinity 

  p(v) <- NIL 

  

 ASSIGN(taken, 0, 0) // Assign 

first Vertex to Vector 

 process(0) 

 totalCost <- 0 

 WHILE NOT EMPTY(pq) DO 

  pair_integer front <- 

top(pq) 

  integer u <- -

front.second, w <- -front.first 

  if NOT taken(u) THEN 

   WRITEPATH(u,w) 

   totalCost <- 

totalCost + w 

   process(u) 

 WRITE(totalCost) 

 

B. Kruskal’s Algorithm 

KruskalPowerPlant() 

{Input: Three Integers denoting the 

number of sites, the number of cables, 
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the number of power plants 

Output: The Cables that use to connect 

one site to another and the total 

cost} 

  

 integer site, cable, nPlant, 

plant 

 integer src, dst, weight, 

totalCost 

 vector_of_pair_integer Indonesia 

  

 INPUT (site, cable, plant) 

 for i = 0, i < nPlant 

  INPUT(plant) {Input Number 

of Nodes which is Power Plant} 

  Indonesia <- MAKEEDGE(0, 

plant, 0) 

 for i = 0, i < cable 

  INPUT(src, dst, weight) { 

Input Another Sites } 

  Indonesia <- MAKEEDGE(src, 

dst, weight) 

 totalCost <- 0 

 SORT(Indonesia) 

 WRITE(totalCost) 

 INITSET(V) 

 for i = 0, i < SIZE(Indonesia) 

  pair_of_integer_pair front 

<- Indonesia[i] 

  if NOT ISSAMESET(front) 

THEN 

   WRITEPATH(front) 

   totalCost <- 

totalCost + front.first 

   UNIONSET(front) 

 WRITE(totalCost) 

 

  

IV.   EXPERIMENTS 

To check the validity of the program that already 

explained in the previous section, a simple experiment 

will be done in this section of paper. Let’s say that there 

are nine areas in Indonesia and three of them are Power 

Plants as described in the following image: 

 
Image 4.1 The abstraction of Area In Indonesia with 9 areas and 3 

Power Plants 

 

The input to the program is: 

 

1 2 5 

1 3 2 

2 3 5 

3 5 4 

2 5 7 

2 4 4 

4 5 5 

5 7 10 

4 7 4 

4 6 6 

6 8 3 

6 7 11 

7 8 8 

7 9 10 

 

 

The illustration of the solution of this example is 

described in the following image: 

 
Image 4.2 The abstraction of Solution of the Example Problem 

 

X is a dummy edge to connect with all the power plants 

avoiding any power plant to connect with each other. 

The result of the program itself for Prim’s Algorithm is 

as following: 

 

 
Image 4.3 Screenshot of Compile Result of Prim’s Algorithm 

 

The result of the program for Kruskal’s Algorithm: 
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Image 4.4 Screenshot of Compile Result of Kruskal’s Algorithm 

 

V.   ALGORITHM ANALYSIS 

For the algorithms that are used in this paper, there are 

some analysis to determine whether the algorithm is 

effective from aspect of complexity and also the cost that 

is produced by the program. 

From the aspect of complexity, as explained in the 

previous section of this paper, the complexity of the 

program is O(log n) since this program is implementing 

Prim’s and Kruskal’s Algorithm. This is still the most 

efficient method acknowledged until this paper is done. 

As comparison the brute force algorithm has O (n!) 

complexity which is so much more inefficient than the 

algorithm used in this paper. 

From the aspect of Total Weight of the Minimum 

Spanning Tree produced, or in this problem described as 

the total cost of maintenance, for every test case that is 

given to the program, the program could always return the 

most minimum value of the Spanning Tree. The example 

in this program is one of the test cases that is solved 

successfully by the program. 

But this program is simplifying the problem of 

Electronic Distribution in Indonesia into a graph that only 

concern about the cost of maintenance. While in the real 

life problem, there are a lot of factor to be considered 

when government want to build or serve an area with a 

certain Power Plant. Those factors are the condition of 

nature, ethics in the certain area, the law that is 

implemented in the certain area, and many more. Those 

factors can also be calculated to be the weight of the 

graph, so this algorithm is still capable to be implemented 

in the real life problem with some more modifications. 

 

VI.   CONCLUSION 

Greedy with Prim’s and Kruskal’s Algorithm is suitable 

to determine which Power Plant to serve a certain area in 

Indonesia with the lowest maintenance cost. By using 

Minimum Spanning Tree, the path of the electricity 

distribution can be analyzed to determine whether the path 

is the most efficient path or not. After all the paths are 

determined, the total cost can be calculated. But the cost 

of the maintenance must be pre-computed before the 

program is executed, and a lot of factors must be 

considered in the calculation of the cost itself. 
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