
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Application of Dynamic Programming to Calculate

Denominations Used in Changes Effectively

Kelvin Valensius (13511009)

Computer Science

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511009@std.stei.itb.ac.id

Abstract— Nowadays, transaction has been a part of

everyone’s life. In this paper, the author will discuss about

how to calculate denominations used in changes effectively.

The author will compare many approaches to solve this

problem. There are 3 approaches that will be discussed in

this paper. The first is brute force approach. The second is

greedy approach. And the last one is dynamic programming

approach.

Index Terms— algorithm, bottom-up, coin change,

dynamic programming

I. INTRODUCTION

Long ago, when people have not had monetary system

yet, they purchased items by bargaining what they got

with items those they wanted. Farmers would trade their

rice or fruits with items those they wanted, and so do other

people.

But nowadays, people have already familiar with

monetary system. We can purchase things with our money

or even with credit or debit card if the seller accepts it.

Millions of transactions (buying and selling things)

happen all over the world each single day. That is why

transactions have become part of our life, which is why

the author want to discuss about it.

Fig. 1.1 Denominations of Rupiah. Retrieved from

http://www.suarasahabat.com/wp-

content/uploads/bentuk-uang.jpg.

In this paper, the author will only focus on transaction

with cash. In cash payment there are many denominations

that is used, as we can see in Fig. 1.1. From that fact, the

question arise, “If I have to pay exactly N Rupiah, can I

pay it with my money without getting changes? If so, how

is the most effective ways to do so?”

II. THEORETICAL BASIS

A. Brute Force

Brute force, also known as complete search is an

approach for solving a problem by iterating every possible

http://www.suarasahabat.com/wp-content/uploads/bentuk-uang.jpg
http://www.suarasahabat.com/wp-content/uploads/bentuk-uang.jpg

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

search space or just part of it to find the solution. There

are two type of brute force, iterative complete search and

recursive complete search. Iterative complete search

searches search space by iterations and loops. Recursive

complete search searches search space by recursive. Both

of them have their own usages. But, if there is a problem

that can be solved by both of them, it is recommended to

solve it using iterative complete search since recursive is

quite heavy for large data.

There are many problems that can be solved using this

approach, such as N-queen problem. This problem is

about how to put N queens in N x N board, so that there is

no queen that attacks each other. This problem can be

solved using recursive complete search by iterating all

possible placement of N queens.

B. Greedy

Greedy approach is used to solve problem by choosing a

locally optimal choice in each step with hope of

eventually reaching the globally optimal solution. A

problem that can be solved using greedy approach must

have two properties:

1. It has optimal sub-structures.

Optimal solution to the problem contains

optimal solutions to the sub-problems.

2. It has the greedy property.

If we make a choice that seems like the best at

the moment and proceed to solve the remaining

sub-problem, we reach the optimal solution.

We will never have to reconsider our previous

choices.

There are many problems that can be solved using this

approach, such as activity scheduling problem. This

problem is about choosing activities so that we can take as

many activity as possible without overlapping with the

schedule given. The idea is to sort the activities in

increasing order of finish time of each activities. Then

after that we try to take the activities from the beginning

(from the earliest finish time). If that activity is not

overlapping with activities that have been taken

previously then you can take it. But if it is overlapping,

just skip it. It has the greedy property where we will never

have to reconsider our previous choice of activity. It also

has optimal sub-structures by choosing activity with the

earliest finish time. This is why it is a problem that can be

solved with greedy approach.

C. Dynamic Programming

The key of dynamic programming is to determine the

problem states and to determine the relationships or

transitions between current problems and their sub-

problems. There are two types of dynamic programming,

top-down and bottom-up. Top-down dynamic

programming is a bit similar to recursive complete search,

but with memorization. Bottom-up dynamic programming

is harder to find compared to top-down dynamic

programming, but it is easier to code because the code

will be similar to iterative complete search.

This is the pros and cons of top-down dynamic

programming and bottom-up dynamic programming:

Top-down dynamic

programming

Bottom-up dynamic

programming

Pros:

1. It is a natural

transformation

from the normal

Complete Search

recursion.

2. Computes the sub-

problems only

when necessary

(sometimes this is

faster).

Pros:

1. Faster if many

sub-problems are

revisited as there

is no overhead

from recursive

calls.

Cons:

1. Slower if many

sub-problems are

revisited due to

function call

overhead.

2. If there are M

states, an O(M)

table size is

required, it will

take lots of space.

Cons:

1. For programmers

who are inclined

to recursion, this

style may not be

intuitive.

2. If there are M

states, bottom-up

dynamic

programming

visits and fills the

value of all these

M states.

There are many problems that can be solved using

dynamic programming, such as 0/1 knapsack problem.

This problem is about compute maximum value of items

that we can carry with given maximum weight that we can

carry. This problem can be solved by both bottom-up

dynamic programming approach and top-down dynamic

programming approach.

III. PROBLEM

Imagine, when you purchasing things in supermarket or

buying foods in canteen, then you pay for it. After that,

when you are waiting for the cashier to give you changes,

instead of giving you the changes the cashier say this,

“I’m sorry, but we are lack of changes, please wait while

we find changes for you.” Imagine if this kind of event

often happens. First, the customer will not satisfied with

the service. Second, it is wasting time.

So, because it is inconvenient, the author will explain

more about it and how to solve it. The cause of that

problem is the cashier cannot choose the denominations

that will be used in changes effectively. Choosing

denominations that will be used effectively can reduce the

chance of lack of changes like the problem described

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

above. The next question is “How?” The author will

explain the solution in the next section.

IV. SOLUTION

A. Some Approaches

Since we do not know the next customer will need how

much changes, we can assume that the most effective way

to choose the denominations used in changes is to pick the

least number of banknotes and coins used for changes in

each transaction. There are some ineffective and

inefficient approaches. The author will discuss about

those approaches for comparison with the best one for this

problem, dynamic programming. Approaches that the

author will discuss first is brute force approach and greedy

approach.

A.1. Brute Force Approach

To solve this problem, one of the approaches that we

can try is by brute force approach. The idea is to try all the

combinations of banknotes and coins that the cashier has

at that time and pick the one that used the least number of

banknotes and coins and of course, have total amount

exactly the same as needed for changes.

With this approach, it can be proven to be effective

since it is iterating all the possible combinations. To

compare with other approaches, the author will try some

test cases to each approaches and compare the results in

the end.

For example, there are 5 coins, 1 cent, 1 cent, 3 cent, 3

cent, and 4 cent. Then the change that is needed to be

given is 6 cents. This is the result table of brute force

approach for the cases above:

No Chosen coins Total value

1 {} 0

2 {1} 1

3 {1} 1

4 {3} 3

5 {3} 3

6 {4} 4

7 {1,1} 2

8 {1,3} 4

9 {1,3} 4

10 {1,4} 5

11 {1,3} 4

12 {1,3} 4

13 {1,4} 5

14 {3,3} 6

15 {3,4} 7

16 {3,4} 7

17 {1,1,3} 5

18 {1,1,3} 5

19 {1,1,4} 6

20 {1,3,3} 7

21 {1,3,4} 8

22 {1,3,4} 8

23 {1,3,3} 7

24 {1,3,4} 8

25 {1,3,4} 8

26 {3,3,4} 10

27 {1,1,3,3} 8

28 {1,1,3,4} 9

29 {1,1,3,4} 9

30 {1,3,3,4} 11

31 {1,3,3,4} 11

32 {1,1,3,3,4} 12

From the result table above, the solution is {3,3} with

using only 2 coins (highlighted above with yellow color).

This is the most optimal solution for this cases.

Although this approach is effective, but we have not

count the complexity of this approach yet. Because for

every banknotes and coins there are only two options, use

it or not. Then the complexity is O(2N) for N banknotes

and coins. This approach become inefficient for larger N.

For example, if the cashier has 100 banknotes and coins.

Then the complexity will be 2100 ≈ 1.27 x 1030. If we

assume that 100000000 (108) process can be processed in

1 second then this example case will take about 1.27 x

1022 seconds. It will take forever to finish so this approach

is not efficient.

This is the pseudo code of brute force approach:

begin

 ans = INFINITE;

 for i = 1 to 2^N do

 begin

 sum = 0;

 tot = 0;

 for j = every 1 bit in i

do

 begin

 sum += arr[j];

 tot++;

 end

 if (sum == M) then

 ans = min(ans,tot);

 end

 writeln(ans); // the least

number of coins that is used for

changes with value M

end

A.2. Greedy Approach

In this section, the author will discuss about solving the

problem above with greedy approach. The idea is to sort

in decreasing order of denominations value. After that, we

pick from the beginning (from the denomination that has

biggest value) as long as it can still fits in the required

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

value of changes. Then after we pick the denomination,

we subtract it from the value of changes. We have to

repeat this process until the value of changes reduced to

zero (there is a solution) or until we have tried all possible

denominations (which means there is no solution).

This approach assumes that if we do as described above

and found a solution, the solution found will be optimal.

To prove the effectiveness of this approach and also to

compare with other approaches, the author will try some

test cases to this approach too (just like the author did in

previous section).

For example, there are 5 coins, 1 cent, 1 cent, 3 cent, 3

cent, and 4 cent. Then the change that is needed to be

given is 6 cents. This is the same test case as in brute

force approach section. The result of this approach is

{4,1,1}. It is not optimal because we can make 6 cents

with {3,3}, as described in brute force section.

The key property to make the greedy algorithm works is

that each denomination's value is a multiple of the value

of the next smaller denomination [2]. The test case above

fails because 4 is not multiple of 3, it is contradicts with

the statement above.

So, we have known that this approach is not effective.

Now, the author will count the complexity of this

approach (for comparison purpose). Assume we have N

banknotes and coins. Then we will need O(N log N) for

sorting them in decreasing order of denomination value

and O(N) for finding the solution. So the complexity is

O(N log N) + O(N) = O(N log N). This is faster than the

brute force approach, but it is not effective for this

problem.

This is the pseudo code of greedy approach:

begin

 ans = 0;

 sort_descending(arr); // sort

descending by value

 i = 0;

 while (M > 0)

 begin

 if (M >= arr[i])

 begin

 ans++;

 M -= arr[i];

 end

 i++;

 end

 writeln(ans); // the least

number of coins that is used for

changes with value M

end

B. Dynamic Programming Approach

In this section, the author will discuss about dynamic

programming approach that will be used to solve this

problem. The idea is to try whether it is good or not to use

this banknotes or coins. The author will give test cases to

show how the dynamic programming works.

For example, there are 5 coins, 1 cent, 1 cent, 3 cent, 3

cent, and 4 cent. Then the change that is needed to be

given is 6 cents. This is the same test case as in brute

force approach and greedy approach sections. The step to

solve this test case using dynamic programming approach

is like this:

1. Initialize dynamic programming table with zero.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

2. Try the first 1 cent.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

3. Try the second 1 cent.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 0 1 2 0 0 0 0

4. Try the first 3 cent.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 0 1 2 0 0 0 0

3 0 1 2 1 2 3 0

5. Try the second 3 cent.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 0 1 2 0 0 0 0

3 0 1 2 1 2 3 0

4 0 1 2 1 2 3 2

6. Try the 4 cent.

Step 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0

2 0 1 2 0 0 0 0

3 0 1 2 1 2 3 0

4 0 1 2 1 2 3 2

5 0 1 2 1 1 2 2

From the tables above we can see in row 5 and column

6 that the most optimal solution is only using 2 coins. To

generate what coin that is used we have to iterate the coin

that is used using parent array of the coins. And the result

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

is the same as brute force approach.

This approach is effective for this problem since it

always give the optimal solution. Now, we have to count

the complexity of this approach. Assume there are N

banknotes and coins and the value of change that is

needed is M then the complexity of this dynamic

programming approach is O(NM). This is faster than brute

force approach and also effective.

V. CONCLUSION

From all the approaches above to solve this problem,

we can conclude that brute force approach is effective but

not efficient enough. Greedy approach is not effective for

some cases and can lead to wrong solution but it is faster

than brute force approach. Dynamic programming

approach is the best of this three approaches. It is both

effective and efficient to solve this problem. With this, the

cashier problem can be minimalized.

REFERENCES

[1] Halim, S. and Halim, F. (2013). Competitive Programming 3 The

New Lower Bound of Programming Contests. 69-120.

[2] http://stackoverflow.com/questions/13557979/why-does-the-

greedy-coin-change-algorithm-not-work-for-some-coin-sets;

Access date : December 20 2013.

ACKNOWLEDGMENT

Kelvin Valensius, as the author of this paper, want to

express his deepest gratitude to Dr. Ir. Rinaldi Munir,

M.T. and Masayu Leylia Khodra, S.T., M.T. as the

lecturers of IF2211 – “Strategi Algoritma”. Special thanks

to God, my family, and all my friend that supporting the

making of this paper.

STATEMENT

In this statement, I declare that this paper is my own

writing, not paraphrasing or translating from other papers,

and not plagiarism.

Bandung, 20 December 2013

Kelvin Valensius (13511009)

http://stackoverflow.com/questions/13557979/why-does-the-greedy-coin-change-algorithm-not-work-for-some-coin-sets
http://stackoverflow.com/questions/13557979/why-does-the-greedy-coin-change-algorithm-not-work-for-some-coin-sets

