
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Application of Knapsack Problem in Procedurally

Generated Game Levels

Muhamad Ihsan (13511049)

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13511049@std.stei.itb.ac.id

Abstract—Video games are very good entertainment

materials.They’re good for spending free time, and therefore

must be fun, refreshing, and of course exciting. One of the

most important aspects in an exciting game is the concept of

levels. Levels make players want to play continuously and

won’t bore them. Levels make the game harder each time the

player progresses, making the player plays on and on.

Moreover, with the addition of randoming aspect on level

generations, the game becomes more challenging, just by

adding some simple surprise factors. Of course, the levels

won’t be fully randomized, there are a lot of factors to be

taken into account, such as difficulty, player’s choice, etc.

Those factors make randoming a level a not-so-simple

problem. This is where Knapsack Problem comes in. The

solution to Knapsack Problem offers a good way to generate

a randomized level, while still considering the factors

mentioned before.

Index Terms—Games, Level Generations, Randoms,

Knapsack Problems

I. INTRODUCTION

Nowadays, everybody knows what video games are.

Many even loves them, because video games are so fun

and entertaining. What people see from a video game can

differ so much, someone may like it for its stunning

graphics, others for its heartwarming story. And many

others love the game solely because of its exciting

gameplay.

What is a gameplay? Gameplay is the way the game is

played. Gameplay defines the game itself, if not, why else

would people call it a ‘Gameplay’? Gameplay is the core

of the game, while the graphics, the music, the story, all of

them are just additions.

Gameplay itself, is a very broad topic. First of all,

there’s game genre, which is some kind of the big theme

of the game. A game’s genre can be adventure, puzzle,

racing, you name it. And even if there are two games with

the same genre, they can still differ greatly to the point of

making people questioning ‘where’s the similarity

between these games?’.

Different though as they might be, games can’t be far

from the concept of levels. Levels don’t have to differ by

difficulty, which has become a common misconception.

Levels don’t have to get harder each time the player

progresses, although the majority of the games out now

follow that guidelines. Still, levels have to be different

from one another. The difference can be in the form of

theme, or maybe a slight change in gameplay.

There are two general types of level design based on

how they are generated, static-level and randomly-

generated-level.

Static-level is where the levels in the game are

statically defined by the game creator. The characteristics

of this level design is that the game surely follow a strict

storyline plot and a fixed asset allocation for each of the

level inside it. This level design is usually implemented on

a big serious game with heavy story and detailed graphic.

Or it can be implemented on small games also, but one

thing is certain, the game creator already predefined all

the possible routes from the game’s start to finish.

Randomly-generated-level is where the levels in the

game are randomly generated each time a certain

milestone is passed, for example after finishing a level.

This level design allows near-infinite combination of

levels to be faced by the players. It is usually implemented

on small-scale games, where replayability is highly

valued, and this design offers it. Replayability makes a

game stay exciting even after numerous playthroughs,

because the levels are different each time the player starts

the game anew. A game genre that consistently applies

this concept is called roguelike.

Although extremely hard, it is not impossible to make a

game with randomly-generated-levels contains a definitive

story. It will put constraints on the level generations and

cause generating a perfectly suitable level seems a bit

harder. It will put another factor to be considered in the

game’s generation algorithm.

It’s not like there are no consideration factors to begin

with. Factors such as player’s level, player’s choice, level

theme, etc. have always been there. These factors will no

doubt make calculation a bit harder while still keeping the

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

levels randomed.

The main solution for the level generation problem is to

apply the Knapsack Problem. The main idea of Knapsack

Problem is to fit as many goods as possible inside the bag

so that it wouldn’t overweight and we get the most

profitable combination of goods.

Similar to the Knapsack Problem, in level generation

problem, the level (bag) must include game contents

(goods) as optimally as possible while not passing the

content limit (not overweight). And there are also a few

factors to be considered when attempting to solve with the

Knapsack Problem, which will be discussed later.

II. RELATED THEORIES

A. Game Level Design

Game Level Design is one of the disciplines of game

development revolving around the creation of video game

levels, stages, missions, etc. Level design is both an

artistic and technical process.

There are two primary purposes to be fulfilled by Level

Design, which is providing players with a goal, and

providing players with enjoyable play experience. Good

level design strives to produce quality gameplay, provide

an immersive experience, and sometimes, especially in

story-based games, to advance the storyline.

Maps' design can significantly impact the gameplay.

For example, the gameplay may be shifted towards a

platformer (by careful placement of platforms) or a puzzle

game (by extensive use of buttons, keys, and doors). Some

FPS maps may be designed to prevent sniping by not

including any long hallways, while other maps may allow

for a mix of sniping and closer combat.

Gimmick maps are sometimes created to explore

selected features of gameplay, such as sniping or fist

fighting. While they are briefly useful to level designers

and interesting to experienced players, they are usually

not included in final list of levels of the game because of

their limited replay value.

Levels are generally constructed with flow control in

mind, that is directing the player towards the goal of the

level and preventing confusion and idling. This can be

accomplished by various means.

B. Roguelike

The roguelike is a sub-genre of role-playing video

games, most often characterized by random level

generation and permanent death. The first game to use this

concept is called Rogue, a 1980 ASCII graphical game,

hence the name roguelike.

The gameplay elements characterizing the roguelike

genre were explicitly defined at the International

Roguelike Development Conference 2008, named the so-

called "Berlin Interpretation". Included in the Berlin

Interpretation are :

 Roguelike games randomly generate dungeon

levels, though they may include static levels as

well. Generated layouts typically incorporate

rooms connected by corridors, some of which

may be preset to a degree (e.g., monster lairs

or treasuries). Open areas or natural features,

like rivers, may also occur.

 The identity of magical items varies across

games. Newly discovered objects only offer a

vague physical description that is randomized

between games, with purposes and capabilities

left unstated. For example, a "bubbly" potion

might heal wounds one game, then poison the

player character in the next. Items are often

subject to alteration, acquiring specific traits,

such as a curse, or direct player modification.

 The combat system is turn-based instead of real-

time. Gameplay is usually step-based, where

player actions are performed serially and take

a variable measure of in-game time to

complete. Game processes (e.g., monster

movement and interaction, progressive effects

such as poisoning or starvation) advance based

on the passage of time dictated by these

actions.

 Most are single-player games. On multi-user

systems, leaderboards are often shared

between players. Some roguelikes allow traces

of former player characters to appear in later

game sessions in the form of ghosts or grave

markings.

 Roguelikes traditionally implement permadeath.

Once a character dies, the player must begin a

new game. A "save game" feature will only

provide suspension of gameplay and not a

limitlessly recoverable state; the stored session

is deleted upon resumption or character death.

C. Knapsack Problem

The knapsack problem or rucksack problem is a

problem in combinatorial optimization: Given a set of

items, each with a mass and a value, determine the number

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

of each item to include in a collection so that the total

weight is less than or equal to a given limit and the total

value is as large as possible.

There are some variations to the Knapsack Problem,

with the most common being the 1-0 Knapsack Problem.

The problem restricts the number of item to zero or one.

There are other variations of the Knapsack Problem, such

as Bounded Knapsack Problem, Unbounded Knapsack

Problem, and Fractional Knapsack Problem.

i. 1-0 Knapsack Problem

Mathematically the 0-1-knapsack problem can be

formulated as follows:

where n is the number of items, z1 – zn are the items, and

each zi has a value of vi and weight of wi. The maximum

weight of the knapsack is W.

There are several ways to solve this problem. This

problem can be solved by Greedy Algorithm (although the

result probably won’t be optimum), or it can be solved by

Dynamic Programming also.

The Greedy variant involves putting the goods into

knapsack starting from the most valuable, or from the

lightest. The Greedy variant is so unreliable that it can

actually be classified as an approximation algorithm.

The Dynamic Programming variant involves a recursive

calculation of m[n,W] where the recursive function of

m[i,w] is defined as follows :

This problem can even be solved by Brute Force (as

well as a lot of other problems), although it will consumes

too much time and very inefficient.

ii. Fractional Knapsack Problem

This problem is a variant to the previously stated 1-0

Knapsack Problem, but this time, the value of the goods

can be between 0 and 1 (can be decimals), so this problem

can’t be solved by Brute Force method, because the

possibility is unlimited.

To solve Fractional Knapsack Problem, a Greedy

Algorithm alone is enough because it can be solved by a

Greedy-By-Density algorithm, where density is the value

of the goods divided by the goods’ weight.

D. Procedurally Generated

Procedurally generated is a term for a game level

designing where the level itself is generated not from a

static source, but it’s generated on-the-fly instead. The

levels in the game are created by means of algorithm.

Historically the first games created with this concept are

very memory-constrained, and this method is used to

solve the memory problem.

The levels in the game are created with the help of

Pseudorandom Number Generators. The generated

numbers then will be used as a part of an algorithm with

predefined seed values to create a very vast game world

that appeared premade.

Most of the games nowadays have each of their detailed

part of the map designed from the start, so the map of the

world is static and of course make it heavily impacted by

storyline. The example of these are games from Assassin’s

Creed series and games from Grand Theft Auto series.

One of the most fenomenal game that used procedural

generation until now is Minecraft. Minecraft is well

known for its features, including randomly generated

world at the start of the game, while still including many

aspects of adventures, explorations, and a lot of features

that make a game interesting.

Minecraft, one of the best example of a game with

procedurally generated world. At the beginning of the

game, the world is randomly generated, each tiles, each

part of the world is.

E. Pseudorandom Number Generator

A pseudorandom number generator (PRNG), also

known as a deterministic random bit generator (DRBG), is

an algorithm for generating a sequence of numbers that

approximates the properties of random numbers. The

sequence is not truly random in that it is completely

determined by a relatively small set of initial values,

called the PRNG's state, which includes a truly random

seed.

Although sequences that are closer to truly random can

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

be generated using hardware random number generators,

pseudorandom numbers are important in practice for their

speed in number generation and their reproducibility. And

its properties fit the purpose of procedural generation

concept.

III. IMPLEMENTATION

Basically the problem in implementing Knapsack

Problem into the level generation problem is the inclusion

of the random numbers generated by the Pseudorandom

Number Generators and how can the number fit in the

Knapsack Problem.

Associating the level generation problem with the

Knapsack Problem is not too hard. First of all, we must

identify the goods to be put into the bag (the candidates).

The candidates are usually found in the form of

fragments of a map, each with their own value and weight.

The candidates can also be in the form of enemies, or

obstacles. But the main thing is, the value of the

candidates are what makes the game full of features, and

the weight of the candidates are the contributing points to

the difficulty of a level.

For comparison, we must maximize the weight of the

candidates so that the difficulty of the level doesn’t differ

too much. In fact, it is obligatory to make the total weight

of the candidates equal to the predetermined weight of the

level (that is the weight of the knapsack in the Knapsack

Problem).

What makes the Knapsack Problem sometimes differ

between the total weight of the goods and the capacity of

the bag in the optimum solution is the fact that the weights

of the goods differ greatly from one another. Suppose the

weights are 5, 10, and 15, then the only possible

combinations of total combined weights of the goods are

5, 10, 15, 20, 25, and 30. For knapsack with capacity

27,28, or 29, the result will be the same as a knapsack

with a capacity of 25.

The upper part of the picture contains fewer number of

goods, and therefore the total combination is fewer. So

basically, the more goods (candidates) there are, the

more diverse the combination of goods possible.

Imagine if the goods are aplenty, and their weights are

1,2,3,4,5,6,7,8,9,10, then surely more combination will

appear and the potential of each level will be maximized.

But it raises yet another problem. Will all the levels

with the same weight similar? If all the goods in the

candidates have different weights, then the exact problem

will happen. But if there are several candidates with

different value and content, but of similar weight, then the

problem can be avoided.

With the W capacity of 11 as example, the combination

can be ABDE or ABCD even though C and E have equal

weight.

The random factor can be implemented now that with a

predetermined weight condition already met, there are still

several possibilities to be chosen from. Thus the general

problem is solved.

Now, there are other factors to be considered, such as

in several levels, there are some game fragments that are

essential to the level and have to be included no matter

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

what.

But it’s never a problem. We only need to take out

these essential fragments from the candidates pool and

substract the total weight of the combined essential

fragments from the capacity (W). The rest can be

calculated normally and the desired result will appear. Of

course the random factor would have diminished, but it’s

the consequences of the inclusion of the essential

fragments, not the drawback of using this Knapsack

Problem as a solution.

We’ve talked a lot about the effects of the weight in the

level generation, but we haven’t talked a single time about

the effect of the value of the candidates. Why need value

calculation when the weight calculation itself is enough?

In simple examples, we have talked about the algorithm

in a very small scale, where the number of goods is

countable by fingers. Now imagine if the number of goods

is numbered to a hundred, or even thousands. We’re going

to need another parameter to measure, which is the value

of the goods.

Imagine if there are a lot of fragments with the same

weight (let’s say 20-30 of them). And the fragments are

varied by their values, which means the better the value of

the fragment, the more fun the game will be.

So basically the value of the candidates serves as a

mean to prioritize some fragments over another, just so to

make the level more interesting. And it is done through

the very definition of the Knapsack problem itself.

But what if some candidates can’t be made into

hundreds of fragments? It is possible to make a hundred

fragments of the map asset containing combination of

trees, rivers, soil, etc. but it is very exhausting to make a

hundred different enemies that encounterable as a part of

the level.

Making a lot of different enemies is very hard, because

it will need a lot of drawing, a lot of balance, and many

more. It’s basically making a lot of new things just to be

randomized by the game’s system itself. Luckily, most of

the times enemies will have levels and other countable

parameters, and it works well for our favor.

We can make the enemies differ a lot by applying the

Fractional Knapsack Problem. The weight will still be

weight, but the value can be changed into the enemies’

level or health, or attack point, whichever preferred.

Through the application of Fractional Knapsack

Problem, we can find the solution even though there are

only a couple of enemies available, because the solution

of Fractional Knapsack is always optimum.

The example of a randomly-generated level taken from

the 2013 video game Rogue Legacy. The room is

generated randomly, as well as the enemies found inside

the room. At the top right of the screen there’s a map

showing the player’s current location. The map is

generated randomly as well because each room is.

IV. CONCLUSION

Procedurally generated levels in video games is one of

many level designs available. It’s good to be implemented

on small-scale games such as indie games that doesn’t

care a lot about storyline, but needs a good factor of

replayability.

One of the ways to implement it is by the means of

Knapsack Problem Application. Included in the Knapsack

Problem are the weights and values of the candidates

which make the Knapsack Problem similar to the level

generation problem.

Here’s how it works. Firstly, identify all the candidates,

usually in the forms of fragments of the game (such as

enemies, obstacles, rooms, etc.). After that, fits as many

candidates as possible into the level (the knapsack) while

still under the capacity (not overweight). This can be

achieved through Greedy Algorithm or Dynamic

Programming. The result will be the randomed, balanced

level, as a desired result.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

REFERENCES

[1] Hatfield, Tom (2013-01-29). "Rise Of The Roguelikes: A Genre

Evolves". Gamespy. Retrieved 2013-04-24

[2] Berlin Interpretation (definition of a "Roguelike") from

RogueBasin, a Roguelike development wiki

[3] Garey, Michael R.; David S. Johnson (1979). Computers and

Intractability: A Guide to the Theory of NP-Completeness. W.H.

Freeman. ISBN 0-7167-1045-5. A6: MP9, pg.247.

[4] Kellerer, Hans; Pferschy, Ulrich; Pisinger, David (2004).

Knapsack Problems. Springer. doi:10.1007/978-3-540-24777-7.

ISBN 3-540-40286-1. MR 2161720.

[5] Martello, Silvano; Toth, Paolo (1990). Knapsack problems:

Algorithms and computer interpretations. Wiley-Interscience.

ISBN 0-471-92420-2. MR 1086874.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

Muhamad Ihsan (13511049)

