
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Application of String Matching in Auto Grading System

Akbar Suryowibowo Syam - 13511048

Computer Science / Informatics Engineering Major

School of Electrical Engineering & Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia

13511048@std.stei.itb.ac.id

Abstract— Auto grading is a system that checks the

submitted input and grade it based on the answer that’s set

by the administrator of the application beforehand. Auto

grading system uses string matching as the algorithm to

score the submission as the text of algorithm and the

answers as the pattern to use in the algorithm. The system

then grade submission by how many patterns that matches

with the text. Using auto grading system, it would take less

times and less resources to grade the submission.
String matching algorithms, or sometimes are called

String searching algorithm are one of the algorithm with

string as the base to work on. String matching algorithms

are kind of algorithm that try to determine whether a

pattern is exists in a text or not. Pattern is a string that is

used in string matching algorithm to traverse the string in

the text. A text is string (usually much larger than the

pattern) that is used to be traversed by string matching

algorithm using the pattern.

Index Terms— Auto Grading System, string matching,

pattern, text.

I. INTRODUCTION

Every school, university, and other educational

institution must have assignments, projects, test, and

every kind of task that are given to the students and to be

checked by their teachers or lecturers. Up until now,

teachers use manual checking for grading their students

assignments. Unfortunately, manual grading takes a lot of

times and resources especially if the teacher checks all of

it by him/herself. Manual grading is very exhausting and

time consuming. To overcome that problem, auto grading

system was made.

Auto grading is a system that checks the submitted

input and grade it based on the answer that‟s set by the

administrator of the application beforehand. Auto grading

system uses string matching as the algorithm to score the

submission as the text of algorithm and the answers as the

pattern to use in the algorithm. The system then grade

submission by how many patterns that matches with the

text. Using auto grading system, it would take less times

and less resources to grade the submission.

II. THEORIES

String matching algorithms, or sometimes are called

String searching algorithm are one of the algorithm

with string as the base to work on. String matching

algorithms are kind of algorithm that try to determine

whether a pattern is exists in a text or not. Pattern is a

string that is used in string matching algorithm to traverse

the string in the text. A text is string (usually much larger

than the pattern) that is used to be traversed by string

matching algorithm using the pattern.

Based on the number of patterns that are used to search

in the text, there are two types of string matching

algorithm, Algorithm with finite set of patterns and

Algorithm with infinite set of patterns. These are few

of the known string matching algorithm with finite (one

or more) pattern(s) to search [1] :

 Brute Force Algorithm

 Deterministic Finite Automaton Algorithm

 Karp-Rabin Algorithm

 Shift Or Algorithm

 Morris-Pratt Algorithm

 Knuth-Morris-Pratt Algorithm

 Simon Algorithm

 Colussi Algorithm

 Galil-Giancarlo Algorithm

 Apostolico-Crochemore Algorithm

 Not So Naive Algorithm

 Boyer-Moore Algorithm

 Turbo BM Algorithm

 Apostolico-Giancarlo Algorithm

 Reverse Colussi Algorithm

 Horspool Algorithm

 Quick Search Algorithm

 Tuned Boyer-Moore Algorithm

 Zhu-Takaoka Algorithm

 Berry-Ravindran Algorithm

 Smith Algorithm

 Raita Algorithm

 Reverse Factor Algorithm

 Turbo Reverse Factor Algorithm

 Forward Dawg Matching Algorithm

 Backward Nondeterministic Dawg Matching

Algorithm

 Backward Oracle Matching Algorithm

 Galil-Seiferas Algorithm

 Two Way Algorithm

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

 String Matching on Ordered Alphabets

Algorithm

 Optimal Mismatch Algorithm

 Maximal Shift Algorithm

 Skip Search Algorithm

 KMP Skip Search Algorithm

 Alpha Skip Search Algorithm

Only three algorithms that are widely known to use

nowadays because of their efficiency or simplicity are

discussed in this paper. Those three are Brute Force

Algorithm, Knuth-Morris-Pratt Algorithm, and

Boyer-Moore Algorithm.

The second type of string matching algorithm is the

algorithm with infinite set of patterns. These kind of

algorithm usually also called String Matching

Algorithm with Regular Expression. Regular

expression (or regex for short) is a special text string for

describing a search pattern [2]. Using regular expression,

string matching algorithm can be used more flexible

because the possibilities of patterns could be infinite for

one regular expression.

Below will be explained four string matching

algorithm. That is Brute Force Algorithm, Knuth-Morris-

Pratt Algorithm, Boyer-Moore Algorithm, and String

Matching Algorithm with Regular Expression.

A. Brute Force Algorithm

The most basic approach of string matching algorithm

is through brute force. The principles of brute force string

matching algorithm is very simple. First, the algorithm

checks for a match between the first character of the

pattern with the first character of the text. If they don‟t

match, the algorithm will move forward to the second

character of the text and compare the first character of the

pattern with the second character of the text. If they don‟t

match again the algorithm will keep moving forward until

it gets a match or until it reaches the end of the text. In

case the first character of pattern matches the text, the

algorithm will move forward comparing the second

character of the pattern will the new character in text and

so on until it matches. If in the middle happened

mismatch, then it will move forward and the search will

restart from the first character in the pattern again.

Here is the visual representation of brute force string

matching algorithm

Picture 2.1 visual representation of brute force string

matching algorithm

The pseudo-code of brute force string matching

algorithm is given below.

B. Knuth-Morris-Pratt Algorithm

Knuth-Morris-Pratt (or for short, KMP) algorithm is

one of the string matching algorithm with almost the same

approach with brute force algorithm. KMP algorithm

match pattern with text same as brute force algorithm but

using smarter way to shift the pattern if mismatch

happened. Let P be a pattern that is used in the algorithm

and P[n] is character in pattern P with index number n. if

mismatch happened in pattern P at P[j], the pattern will be

shifted right (position of mismatch – border function(j)).

Border function is a function that stores the number of

largest prefix of P[1..j-1] that is the same with the suffix

of P[1..j-1].

For example let pattern P = “abacabad” and mismatch

happened in j=6 so that the substring that will be used in

border function is “abacab”. Now the algorithm will try to

find the largest suffix that is the same with the prefix. The

answer is “ab”. So, the border function will give an output

„2‟. Let‟s take a look what would table of border function

be.

k 1 2 3 4 5 6 7 8

B(k) 0 0 1 0 1 2 3 0

Table 2.1Border Function of pattern “abacabad”

The pseudo-code of KMP algorithm is given below.

int BruteForce (string text, string

pattern)

{

 int m = pattern.length();

 int n = text.length();

 for (int i=0;i<n-m+1;++i)

 {

 int j = 0;

 bool check = true;

 while

((check)&&(j<pattern.length()))

 {

 if (text[j]!=pattern[i+j])

 check = false;

 j++;

 }

 if (check)

 // pattern found

 return i;

 }

 return -1;

}

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Here is a visual representation of an example of KMP

algorithm.

Picture 2.2 Visual Representation of KMP Algorithm

C. Boyer-Moore Algorithm

Boyer-Moore (or for short, BM) algorithm searches

differently from KMP and brute force string matching

algorithm. BM algorithm checks the pattern from right to

left. There are two unique characteristics of BM

algorithm. The first one is BM algorithm search patter in

text by moving backwards from end of pattern to start of

pattern. The second one is if mismatch happened, BM

algorithm move the pattern forward with three specific

condition.

If KMP algorithm has Border function to help the

algorithm, BM algorithm has Last Occurrence function.

Last Occurrence function maps all letters in alphabet of

the pattern to integer. The integer output is index that

shows the last occurrence of the specified character in the

pattern.

For example of pattern “abacabad”. Character „a‟ has

last occurrence function value of 7 because the last

character of „a‟ occupies the 7
th

 index. For any character

that is not exist in the pattern the index will be -1. The

complete table of last occurrence function for “abacabad”

is shown below :

x a b c d

L(x) 7 6 4 8

Table 2.2 Last Occurrence function of pattern

“abacabad”

There are three specific condition if mismatch

happened in position j in text T and position k in pattern

P:

 If last occurrence function of T[j] shows an

index m so that m < k, then the pattern will

move forward so that P[k] would align with

T[j].

 If last occurrence function of T[j] shows an

index m so that m > k, then the pattern will

move forward one step to the right.

 If last occurrence function of T[j] shows and

index m so that m = -1 (meaning there is no

character T[j] in pattern P), then the pattern

will move forward as much as the length of

pattern P.

The Pseudo-code of BM algorithm is given below.

int KMP (string text, string pattern)

{

 int m = pattern.length();

 int n = text.length();

 // creating precompute table

 int table[m];

 table[0] = 0;

 int cnd = 0;

 int i = 1;

 while (i < m)

 {

 if (pattern[i]==pattern[cnd])

 {

 table[i] = cnd + 1;

 cnd = cnd + 1;

 i++;

 }

 else if (cnd > 0)

 cnd = table [cnd -1];

 else if (cnd ==0)

 {

 table[i] = 0;

 ++i;

 }

 }

 i = 0;

 int j = 0;

 bool check = true;

 while ((check)&&(i<n))

 {

 if (pattern[j]==text[i])

 {

 i++;

 j++;

 }

 if (j==m)

 return i;

 else if

((i<n)&&(pattern[j]!=text[i]))

 {

 if (j!=0)

 j = table[j-1];

 else

 i++;
 }

 }

}

1

a b a c a a b a c a b a c a b a a b b

7

8

19181715

a b a c a b

1614

13

2 3 4 5 6

9

a b a c a b

a b a c a b

a b a c a b

a b a c a b

10 11 12

c

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Here is visual representation of an example of BM

algorithm.

D. String Matching with Regular Expression

Regular expression (or regex for short) is a special text

string for describing a search pattern. Any kind of string

that wanted to be the pattern can be changed to a single

regular expression. Below will be explained some

important syntax of regular expression.

C Description

. Matches any single character.

[] A bracket expression. Matches a single character

that is contained within the brackets.

[^] Matches a single character that is not contained

within the brackets

^ Matches the starting position within the string

$ Matches the ending position of the string or the

position just before a string-ending newline.

() Defines a marked sub-expression. The string

matched within the parentheses can be recalled

later

\n Matches what the nth marked sub-expression

matched, where n is a digit from 1 to 9.

* Matches the preceding element zero or more

times.

{m,n} Matches the preceding element at least m and not

more than n times.

III. IMPLEMENTATION IN AUTO GRADING SYSTEM

In an Educational Institution, auto grading system can

be used to grade student‟s assignment and test. There are

few advantages of using auto grading system for grading

assignment and test. The first advantage is it would need

less resources and less time to process than manual

grading. The second advantage is it would be more

objective to grade the submission because the pattern

would always be the same and program have no

subjectivity on them. The third advantage is that the

administrator (in this case, teacher) can set beforehand

how strict they want the answer should be. They can set

how precise the submission to the real answer the teacher

provided.

If teacher want the answer to be more flexible, they

could have used string matching algorithm with regular

expression because it means that there will be more

option of what the answer could be. But string matching

algorithm with regular expression doesn‟t have to used

only if teacher want the answer to be flexible. It could

also be used to make a strict option of answer, even only

one option of answer.

int BoyerMoore (string text, string

pattern)

{

 int m = pattern.length();

 int n = text.length();

 int table1[256];

 // creating the first char table

 for (int i=0;i<256;++i)

 table[i] = m;

 for (int i=0;i<m-1;++i)

 table[pattern[i]] = m -1 – i;

// creating the second offset table

 int table2[m];

 int last_prefix = m;

 for (int i=m-1;i>=0;--i)

 {

 bool check = true;

 int j = i+1, k = 0;

 while ((check)&&(j<m))

 {

 if (pattern[j]!=pattern[k])

 check = false;

 ++j;

 ++k;

 }

 if (check)

 last_prefix = i+1;

 table2[m-1-i] = last_prefix–j+m–1;

 }

 for (int i=0;i<m-1;++i)

 {

 int slen = 0;

 for (int j=i, k=m-1;j>=0 &&

pattern[j]==pattern[k]; --j, --k)

 slen +=1;

 table2[slen] = m – 1 – j

+slen;

 }

 // searching

 bool check = true;

 int i = m – 1, j = 0;

 while ((check)&&(i<text.length())

 {

 j = m -1;

 while ((check) && (pattern[j]

== pattern[i])

 {

 if (j==0)

 // found

 check = false;

 --i;

 --j;

 }

 if (check)

 j+=max(table2[m-1-j],

table[text[i]]);

 }

 if (!check)

 return i;

}

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Other ways to make the pattern for string matching

algorithm is using finite patterns. Teachers can use KMP

algorithm or BM algorithm as the string matching

algorithm. There a condition where an algorithm is better

than the other one and that condition is based on how

many characters are in the alphabet that is used. If there

are only few characters in the alphabet, then KMP

algorithm is the better choice to use rather than BM.

Otherwise, if there are a lot of characters in the alphabet,

then BM algorithm would be better choice to use. BM

algorithm is better to use when there are a lot of character

in alphabet because the probability of the pattern will

move forward as much as the length of the pattern is

higher when the alphabet is wider.

Looking at the reason above, teacher can choose which

algorithm is better to use depends on what kind of

submission will be submitted later because the number of

characters in the alphabet that are used will be the

determinant to choose which algorithm to use.

For example if a teacher of programming course want

his/her student to make a simple C program. The teacher

expects the answer to be like the picture below.

Picture 3.1 Example to use in auto grading system

Because the number of characters in the alphabet is a

lot, then KMP is not very efficient to use in this case.

Then, the viable options are string matching with regular

expression or BM algorithm. For example one of the list

of pattern if the teacher want to use BM algorithm would

be :

 string name;

 std::string name;

 cin >> name;

 #include <iostream>

 cout << “Hello “ + name;

 return 0;

 int main()

based on the pattern above, the auto grading system

then can score students submit. For example if a student

submit like in picture below :

As we can above, on the submission the student

submitted, the student forgot to add declaration “string

name;”. based on the list of pattern the teacher set before,

there are seven pattern the teacher listed. Therefore, the

student that only correct six pattern get 6/7 score or 85.7

points.

IV. CONCLUSION

Auto grading system is better than manual grading

system in educational institution because it would cost

less resources and less time consuming. Auto grading

should be used only if the pattern can be specified. If the

pattern cannot be specified then auto grading cannot be

used.

In selecting which string matching algorithm is better

to choose, there are 3 options, string matching with

regular expression, KMP algorithm, and BM algorithm.

Regular expression should be used if you want more

flexible patterns. KMP should be used if there are only

few of characters in the alphabet and BM should be used

if there are a lot of characters in the alphabet.

REFERENCES

Exact String Matching Algorithms, http://www-igm.univ-

mlv.fr/~lecroq/string , accessed on 19.33, 18th December 2013

Regular-expression info. http://www.regular-expressions.info/ ,

accessed on 8.07, 19th December 2013

Brute Force Algorithm visual representation,

http://www.compbio.biosci.uq.edu.au , accessed on 10.40, 19th

December 2013

M.Rinaldi , PatternMatching.ppt, accessed on 9.30, 20th December 2013
Pattern Matching , http://c2.com/cgi/wiki?PatternMatching , accessed on

9.44 , 20th December 2013.

http://www-igm.univ-mlv.fr/~lecroq/string
http://www-igm.univ-mlv.fr/~lecroq/string
http://www.regular-expressions.info/
http://www.compbio.biosci.uq.edu.au/
http://c2.com/cgi/wiki?PatternMatching

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2013

ttd

Akbar Suryowibowo Syam - 13511048

