
Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

Damerau-Levenshtein Algorithm and Bayes Theorem for

Spell Checker Optimization

Iskandar Setiadi 13511073

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

iskandarsetiadi@students.itb.ac.id

Abstract—Google, as the world largest search engine, has

been well-known worldwide for its features. One of the main

concern in giving a nice user experience is spell checker.

There are two main concerns in spell checker application,

that’s it, speed and accuracy. Google’s spell checker could

perform quickly with a rather good accuracy in its

correctness. Yet, an algorithm itself couldn’t give a hundred-

percent accuracy as users’ expectation. However, there’s

always a trade-off between better accuracy and faster speed

in spell checker. We need to create an algorithm with an

acceptable rate of running time while maintaining an

acceptable rate of accuracy. We will implement several

analyses with Bayes theorem and probabilities in order to

improve the accuracy of spell checker. Also, we will integrate

this implementation with Damerau-Levenshtein algorithm.

Index Terms—Bayes theorem, Damerau-levenshtein

algorithm, language processing, spell checker.

I. INTRODUCTION

In this information era, spell checker application has a

lot of functionalities such as an integrated application in

word processor, email client, electronic dictionary, and

search engine. A spell checker is defined as an application

program which flags words in a document that may not be

spelled correctly.

Spell checker is started to be developed in 1957. It’s

used to find records in database in spite of incorrect

entries. Les Earnest, who headed the research at Stanford

University, saw it necessary to include the first spell

checker that accessed a list of 10.000 acceptable words. In

1971, Ralph Gorin created the first true spelling checker

program written as an application program for general

English text.

The first spelling checker for personal computers

appeared for CP/M and TRS-80 computers in 1980,

followed by IBM PC in 1981. On the personal computers,

these spelling checkers were standalone programs, many

of which could be run in TSR mode from within word-

processing packages on personal computers. The first

usage of spelling checkers as an integrated application

was started by the mid-1980s. Developers of popular

word-processing packages like WordStar and

WordPerfect had incorporated spell checkers in their

packages. However, this required increasing

sophistication in the morphology routines of the software

in rather difficult languages.

Recently, spell checkers has moved beyond word

processors. A web browser may have a spell checker

which helps user in editing Wikitext, writing on many

webmail sites, blogs, and social networking websites.

Picture 1.1 Google spell checker in search engine

As shown in picture 1.1, Google itself has implemented

a spell checker feature in its search engine. Almost all

applications which are related to word-processing have

implemented this spell checker feature.

A basic spell checker carries out the following

processes:

1. It scans all the text and parses the words contained

in it

2. It compares each word with a known list of

correctly spelled words. This list might contain

another information to increase the accuracy of

spell checker

3. The next step is a language-dependent algorithm

for handling morphology (language specific). The

different forms of the same word, such as plurals,

verbal forms, contractions, and possessives need to

be considered.

Normal algorithm such as brute force (comparing each

letter one by one manually) will have relative slow speed

in its running time. As we want to improve the accuracy of

spelling checker, brute force algorithm is no longer

feasible for being implemented. We will analyze several

methods to increase the processing speed and accuracy of

a spell checker.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

II. SOME THEORIES

2.1 Dynamic Programming

Dynamic programming is widely used in solving

computational problems by breaking the solution down to

several steps. The main characteristic of dynamic

programming is solving greater problem from its sub-

problems. Optimality principle states that if the total

solution is optimal, then all of its sub-solutions up to the

total solution are also optimal.

There are two general methods in dynamic

programming, that’s it, bottom-up and top-down DP.

Dynamic programming usually stores its memorization in

tables.

2.2 Levenshtein Distance

In computer science and information theory,

Levenshtein distance algorithm is an algorithm which is

used for string processing. This algorithm measures the

difference between two string sequences. Levenshtein

distance counts the minimum number of single-character

edits (insertion, deletion, substitution) required to change

one word into the other. Basically, this algorithm is widely

used for sequence alignment between two different string

patterns.

Let’s take an example between two words “kitten” and

“sitting”. After running Levenshtein algorithm between

both words, we’ll find that the Levenshtein distance

between both of them is 3.

 kitten  sitten (substitution of “s” for “k”)

 sitten  sittin (substitution of “i” for “e”)

 sittin  sitting (insertion of “g” at the end)

There is no way to change “kitten” to “sitting” in less

than 3 single-character edits. The Levenshtein distance

between two strings is always at least the difference of the

sizes of the two strings and at most the length of the

longer string.

Algorithm for Levenshtein distance is shown below:

function levenshteinDistance(input s : array[1..m] of char,

input t : array[1..n] of char)  integer

{function to compute Levenshtein distance between two

strings using Levenshtein algorithm}

DECLARATION

i, j : integer

d : array [0..m][0..n] of integer

ALGORITHM

for i  1 to m do { source prefixes initialization }

 d[i][0]  i

endfor

for j  1 to n do { target prefixes initialization }

d[0][j]  j

endfor

{ using Levenshtein Algorithm to check }

for i  1 to n do

 for j  1 to m do

 if (s[i] == t[j]) then

 d[i][j]  d[i-1][j-1] {same character}

 else

 d[i][j]  minimum

 (

 d[i-1][j] + 1, { deletion }

 d[i][j-1] + 1, { insertion }

 d[i-1][j-1] + 1 { substitution }

)

 endif

 endfor

end for

 d[m][n] { return results }

Using the algorithm above, comparison between

“kitten” and “sitting” can be tabularized into table below:

- k i t t e n

 0 1 2 3 4 5 6

s 1 1 2 3 4 5 6

i 2 2 1 2 3 4 5

t 3 3 2 1 2 3 4

t 4 4 3 2 1 2 3

i 5 5 4 3 2 2 3

n 6 6 5 4 3 3 2

g 7 7 6 5 4 4 3

Table 2.1 DP Table for “kitten” and “sitting”

We can also use less space, O(min(n,m)) instead of

O(m.n), since it only requires one previous row to process

the current row at any one time.

2.3 Damerau-Levenshtein Distance

Frederick J. Damerau has improved Levenshtein

algorithm with an additional operation to check the

distance between strings, that’s it, a transposition of two

adjacent characters. Damerau stated that this algorithm

has corresponded to more than 80% of human

misspellings. By taking four string operations (insertion,

deletion, substitution, and transposition) , this algorithm

has also been used in biology to measure the variation

between DNA.

Algorithm for Damerau-Levenshtein distance, which is

almost the same with Levenshtein distance, is shown

below:

function damerauLevenshteinDistance(input s :

array[1..m] of char, input t : array[1..n] of char)  integer

{function to compute Damerau-Levenshtein distance

between two strings using Damerau-Levenshtein

algorithm}

DECLARATION

i, j : integer

cost : integer

d : array [0..m][0..n] of integer

ALGORITHM

for i  1 to m do { source prefixes initialization }

 d[i][0]  i

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

endfor

for j  1 to n do { target prefixes initialization }

d[0][j]  j

endfor

{ using Damerau-Levenshtein Algorithm to check }

for i  1 to n do

 for j  1 to m do

 if (s[i] == t[j]) then

 cost  0

 else

 cost  1

 endif

 d[i][j]  minimum

 (

 d[i-1][j] + 1, { deletion }

 d[i][j-1] + 1, { insertion }

 d[i-1][j-1] + cost { substitution }

)

 if (i > 1 and j > 1 and s[i] == t[j-1] and s[j-1] == t[i])

then

 d[i][j]  minimum

 (

 d[i][j],

 d[i-2][j-2] + cost { transposition }

)

 endif

 endfor

end for

 d[m][n] { return results }

We’re using different color to emphasize the difference

between Damerau-Levenshtein and Levenshtein

algorithm. This algorithm differs only in an additional

condition for transposition case. Overall, this algorithm

has the same time complexity with Levenshtein algorithm

(O(m.n)).

The following image summarizes the edit-distance

difference between Levenshtein and Damerau-

Levenshtein algorithm:

Picture 2.1 The edit distance between two algorithms
[4]

2.4 Bayes Theorem

Bayes theorem is a probability theory which focuses on

the manipulation of conditional probabilities. Bayes

theorem is a result that derives from the more basic

axioms of probability. Bayes theorem has applications in a

wide range of calculations involving probabilities. Bayes

theorem can be formularized by the following expression:

(|) ()
(|)

()

P B A P A
P A B

P B


Let’s take a simple example on how this theory works.

Suppose that a lecturer told you that he wanted to meet a

certain student in his class. There exists two majors, IF

and STI. Not knowing the distribution of student in both

major, the probability that he wanted to meet either IF or

STI student is 50%. Now suppose he also told you that the

student is a male. Suppose that 90% of students in IF are

male and 80% students in STI are male. Our goal is to

calculate the probability that the lecturer wanted to meet a

male student from IF major. Let’s denote male student as

M and female student as F. Let’s also denote IF major as I

and STI major as S. Using the formula of Bayes theorem,

we have:

(|) () (|) ()
(|)

() (|) () (|) ()

P M I P I P M I P I
P I M

P M P M I P I P M S P S
 



where we have used the law of total probability. This

yields:

0.9*0.5
(|) 0.53

0.9*0.5 0.8*0.5
P I M  



The probability that the lecturer wanted to meet an IF

major student, given that the person is male, is about 53%.

2.5 Terms

The following are several terms which will be generally

used in this paper.

2.5.1 n-Gram

n-Gram is a contiguous sequence of n items from given

sequence of text, which is widely used in computational

linguistics and probability. n-Grams typically are

collected from a text or speech corpus. A n-gram of size 1

is usually called as a “unigram”, size 2 is a “bigram”, and

size 3 is a “trigram”.

In spell checker, correcting mistakes in spelling

sometimes need more than unigram for verifying its

correctness. For example, it’s impossible for having two

adjacent verbs in one complete sentence, and we can infer

that one of them must be mistyped. The following case

needs to take bigram into consideration.

More concisely, an n-gram model predicts xi based on

xi-(n-1), … , xi-1. In Bayes theorem, we can denote this

model as P(xi| xi-(n-1), … , xi-1). For our simplicity, we’ll

only take unigram to our current account.

2.5.2 Edit Distance

Edit distance is a term in computer science and defined

as a way of quantifying how dissimilar two strings are to

one another by counting the minimum number of

operations required to transform one string into the other.

Both Levenshtein and Damerau-Levenshtein have their

own definitions regarding operations to determine the

edit-distance between two strings. For our simplicity,

we’ll only take two strings which have a value of 1 in their

edit distance to our current account.

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

III. IMPLEMENTATION AND EXPERIMENTS

In this experiment, we will use two test-case, both are

sized of 15 and 60. The first test-case is created from

random example while the second test-case is created

from a list of top 60 common mistakes in spelling,

provided by Wikipedia. The dictionary contains 6.000

common words which are widely used by people.

3.1 Naïve Implementation with Damerau-Levenshtein

The easiest way to implement spell checker is traversing

each word through all words in the dictionary. The

implementation of this algorithm is almost the same with

pseudo-code in 2.3 above.

The result from running the first test-case:

Normal = 333 ms

Average Processing per Query = 22.2 ms

Accuracy = 73 %

Number of Found = 14 / 15

The result from running the second test-case:

Normal = 1642 ms

Average Processing per Query = 27.3667 ms

Accuracy = 88 %

Number of Found = 45 / 60

The results show that each word needs about ± 25 ms to

be processed using 6.000 words in dictionary. The

accuracy of spell checker using this method of

implementation is ± 81%.

3.2 Pruned Naïve Implementation

The further analysis shows that we don’t need to check

words with length below than (checked_length – 1) and

greater than (checked_length + 1) in edit distance of 1.

We will only check all words in range of [checked_length

– 1, checked_length +1].

The result from this pruning method for the first test-

case:

Pruned = 138 ms

Average Processing per Query = 9.2 ms

Accuracy = 73 %

Number of Found = 14 / 15

While the result from running the second test-case:

Pruned = 737 ms

Average Processing per Query = 12.2833 ms

Accuracy = 88 %

Number of Found = 45 / 60

The results above show that there’s an improvement

from ± 25 ms to ± 10.5 ms using pruned naïve

implementation. The accuracy is obviously still the

same with previous method, around ± 81% accuracy.

3.3 Bayes Theorem Implementation

In this method, we will have several analyses before we

implement the algorithm. Suppose that we are trying to

find the correction of c given the original word w:

maxc (|)P c w

We want to choose the correction c which is having

greatest value of P(c|w). By substituting Bayes theorem,

this is equivalent to:

maxc
(|) ()

()

P w c P c

P w

Since P(w) is the same for all kinds of correction, we

can eliminate P(w), simplify the equation to:

maxc (|) ()P w c P c

Let’s say, P(c) is a probability that the proposed

correction c stands on its own. In this experiment, P(c)

will be determined by word ranks in the dictionary. For

example, the word “nice” has greater probability than

“niece” based on words’ usage statistics.

P(w|c) is a probability that w would be typed when the

user meant c. Simply said, this is the probability of how

likely the user would type w by mistake when c was

intended.

We will choose the word with maximum probability

from all possible words in dictionary. Of course, word that

is having edit distance greater than 1 has probability of 0.

In 3.1 and 3.2, we are only using P(c) to check.

There are many factors of P(w|c) that we need to take

into account, but since some factors are not completely

independent (increasing probability of x may decrease the

probability of y), we’ll make simple analysis through it.

Let’s have a little brainstorming. Which is having

greater probability, mistyped a word which has less

character, more character, or two characters swapped? For

example, “burnd” is closer to “burned” than “burn” in

P(w|c), even though both of them are having edit distance

of 1. By using several statistics, we’ll get the priority as

below:

1. The probability of w having less character than c is

greater than the probability of w having same

number of characters with c.

2. The probability of w having same number of

characters with c is greater than the probability of

w having more character than c.

Since we don’t have enough data to separate the

probability in quantitative measure, let’s assume that each

categories have 1/3 marginal from dictionary total size. As

there’re 6.000 words in our dictionary, we’ll have 2.000

ranks marginal.

Probability of w having less character

 =

Probability of w having same number of characters with

c + 2.000

 =

Probability of w having more character than c + 4.000

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

The word “burned” will have 4.000 ranks greater than

“burn” when we are comparing it with “burnd”. In this

method, we’ll assume that swapping and mistyping

operations in probability of w having same number of

characters with c are the same.

The result from running the first test-case:

Bayes Spell Checker = 121 ms

Average Processing per Query = 9.512 ms

Accuracy = 86 %

Number of Found = 14 / 15

The result from running the second test-case:

Bayes Spell Checker = 791 ms

Average Processing per Query = 13.1833 ms

Accuracy = 91 %

Number of Found = 45 / 60

The results show that each words needs about ± 11.3 ms

using Bayes theorem implementation. The accuracy of

spell checker is around ± 88.5%. This method has the

same complexity with pruned naïve implementation, with

running time difference < 1 ms for a query (from ± 10.5

ms to ± 11.3 ms). Also, the implementation of Bayes

theorem has improved its accuracy by ± 7.5% (from ±

81% to 88.5%), which is feasible enough to be used as a

spell checker.

Method Average Time Accuracy

Naïve ± 25 ms ± 81%

Pruned ± 10.5 ms ± 81%

Bayes T. ± 11.3 ms ± 88.5%

Table 3.1 Summary of Methods Performance

IV. FURTHER ANALYSIS WITH BAYES THEOREM

In this part, we will have further analyses with Bayes

theorem in order to improve the accuracy of our spell

checker. We’ll assume that our algorithm has relative

good running time and does not need special improvement

in its time complexity.

Beforehand, we need to improve our dictionary size

since 6.000 common words only give around ± 84%

matching from common mistakes. For example, the

following is taken from the second test-case:

firey not found. Expected : fiery. Do you mean:

(*) fire(482), fired(3293)

In the example above, the expected word is not existed

in our current dictionary. The expected number of words

in dictionary should be around 10.000 common words.

Let’s back to our previous assumption. We’re assuming

that swapping and mistyping operations are the same. In

reality, we should take several other factors into account,

for example, keyboard distance. The following is taken

from the second test-case:

cleark not found. Expected : clerk. Do you mean:

(*) clear(355), clerk(3095), clark(4387)

Both “clear” and “clerk” are having the same number of

words. In our previous assumption, both words will not be

affected by P(w|c). But our intuitive should be able to

prioritize “clerk” over “clear” because of keyboard

distance. Word “r” and “k” has a distance of 5 in

QWERTY keyboard, while “e” and “a” has only a

distance of 2 in QWERTY keyboard. Hence, “clear”

should have lower probability than “clerk” in P(w|c). Of

course, we should gather more data in order to convert

keyboard distance into quantitative numeric.

The other factor that we need to take into account is

error character location. It’s more unlikely for user to

have a misspelling in first character of the word than two

same adjacent consonants.

Yet, language processing could be tricky. It’s possible

for a word with edit distance of 0 to be misspelled. The

obscurity of its language model P(c) must be taken into

account if we want to improve our algorithm with not only

edit distance of 1, but also other value of edit distance.

P(c), the language model, becomes more important as

we take bigram or trigram into our account. The

probability P(c) of two adjacent verbs should be near 0.

Sometimes, people who have mother language other

than English may make typical / same mistakes. The

main reason behind it is language transformation.

V. CONCLUSION

We can implement Damerau-Levenshtein algorithm

with Bayes theorem to improve the accuracy of spell

checker application.

There are still many rooms of improvement that could

be applied based on this analysis. There are many aspects

that we need to take account into in order to improve the

effectiveness of spell checker, such as:

- Number of common words and obscure words in

dictionary

- Type of keyboard and its distance between two

specific characters

- Common knowledge of people (related to mother

language and geographical area)

- Edit-distance (greater than 1 or 0, even though

edit-distance of 1 has covered at least 80% of

correctness probability)

- N-grams (greater than 1, Google has provided n-

gram data based on billion search queries from its

search engine which can be downloaded at

http://storage.googleapis.com/books/ngrams/books/

datasetsv2.html)

http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Makalah IF2211 Strategi Algoritma – Sem. I Tahun 2013/2014

- Language grammar structures (such as subject –

predicate – object in English)

The trade-off between higher accuracy (even by a

slight) and time is important, since users often need real-

time result from a spell-checking application. Number of

data is the most important thing in improving the accuracy

of spell checker, which Google has the most benefits from

its search engine.

VI. ACKNOWLEDGMENT

Iskandar Setiadi, as the author of this paper, wants to

express his deepest gratitude to Dr. Ir. Rinaldi Munir,

M.T. and Masayu Leylia Khodra, ST., MT. as the

lecturers of IF 2211 – “Strategi Algoritma”. Special

thanks to my family and all of my friends in Informatics

2011.

REFERENCES

[1] Dictionary of 6000 Most Frequently Used Words in English.

November 29, 2013 (5.00 PM) < http://www.insightin.com/esl/ >

[2] Munir, Rinaldi, 2009. Diktat Kuliah IF2211 Strategi Algoritma.

Program Studi Teknik Informatika STEI ITB

[3] Peter Norvig, How to Write a Spelling Corrector. November 30,

2013 (4.45 AM) < http://norvig.com/spell-correct.html >

[4] Richard Minerich. Levenshtein Distance and the Triangle

Inequality. December 18, 2013 (2.10 AM) <

http://richardminerich.com/tag/damerau-levenshtein-distance >

[5] Steve Hanov. Fast and Easy Levenshtein Distance using a Trie.

November 30, 2013 (4.30 AM) <

http://stevehanov.ca/blog/index.php?id=114 >

[6] Walpole, Ronald, Raymond H. Myers, Sharon L. Myers, 2007.

Probability & Statistics for Engineers & Scientists. Pearson

Prentince Hall

ADDITIONAL NOTES

All of the test-case which used in this experiment can be

downloaded at:

https://dl.dropboxusercontent.com/u/58181220/spellcheck

er_testcase.rar

Source code (written in C++) and dictionary
[1]

 used in

this experiment can be downloaded at:

https://dl.dropboxusercontent.com/u/58181220/spellcheck

er_source.rar

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Desember 2013

Iskandar Setiadi 13511073

http://www.insightin.com/esl/
http://norvig.com/spell-correct.html
http://richardminerich.com/tag/damerau-levenshtein-distance
http://stevehanov.ca/blog/index.php?id=114
https://dl.dropboxusercontent.com/u/58181220/spellchecker_testcase.rar
https://dl.dropboxusercontent.com/u/58181220/spellchecker_testcase.rar
https://dl.dropboxusercontent.com/u/58181220/spellchecker_source.rar
https://dl.dropboxusercontent.com/u/58181220/spellchecker_source.rar

