
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 1

Levenshtein Distance Calculation Using Dynamic

Programming for Source Code Plagiarism Checking

Tito D. Kesumo Siregar
1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1
13511018@std.stei.itb.ac.id

Abstract -- The aim of this paper is to determine whether

Levenshtein distance is a good enough value for plagiarism

checking. In order to determine it, an experiment is made

using an implementation of Wagner-Fischer algorithm to

calculate Levenshtein distance. From the Levenshtein

distance, a similarity value is calculated to determine

whether two source codes are similar or not, thus detecting

the plagiarism attempt.

Index Terms -- plagiarism, levenshtein, edit distance, dynamic

programming, wagner-fischer.

I. INTRODUCTION

Computers are machines able to perform various kinds

of tasks, algorithms, and calculations. These tasks,

algorithms, and calculations are described for the

computer using a collection of computer instructions

called source code, usually as text. Source codes are

specially designed to allow computer programmers to

express computer tasks and calculations in a simpler and

easier to read text. A source code will be compiled by a

compiler program into a lower-level machine code

understood by the computer. Alternatively, a source

code can be interpreted to perform the tasks described

by the source code on the fly.

Building computer programs and applications requires

the computer programmers to create source codes to

express what computers should do to perform a certain

task, algorithm, or calculation. If a person owns the

source code for a particular application, the person will

be able to build the computer program expressed by the

source code. This is a delicate issue for several entities

working with source codes, such as businesses and

academic entities. Businesses that work with computer

programs need to have the source codes they created to

be protected against plagiarism, while academic entities

need to avoid plagiarism attempts of a source code.

To detect plagiarism of a source code, an algorithm to

compare two similar source code is needed. There exists

algorithms to compare strings that can be used to

compare text, and compare source codes. However,

source code comparison is not a trivial task because of

various reasons, such as the presence of white space

characters and attempts to avoid detection by modifying

the source code variable names.

The aim of this paper is to determine whether

Levenshtein distance is a good enough value for

plagiarism checking. If it is good enough, a lower bound

of value whether two file compared is considered a

plagiarism should be able to be determined.

II. BASE THEORIES

2.1. Dynamic Programming

Dynamic programming is a technique widely used in

solving computational problems by reducing the

solution to a several computable steps. A distinguishing

characteristic of dynamic programming is creating

recursive function to solve a range in the problem,

which then will be used to solve the whole problem set.

Dynamic programming can dramatically reduces the

runtime of some algorithms (but not all problems has

dynamic programming characteristics) from exponential

to polynomial. Many (and still increasing) real world

problems are only solvable within reasonable time using

dynamic programming.

To be able to use dynamic programming, the original

problem must have: (1) optimal sub-structure property:

optimal solution to the problem contains within its

optimal solution to sub-problems, and (2) overlapping

sub-problems property: to recalculate the same problem

twice or more. By using the optimality principle, if the

total solution is optimal, then the sub-solutions leading

to the total solution is optimal, too.

The common dynamic programming implementation

methods are top-down dynamic programming and

bottom-up dynamic programming. The top-down

dynamic programming often used a recursive function

with memorization, while the bottom-up dynamic

programming often used an array or a matrix.

2.2. Levenshtein Distance

Levenshtein distance is a measure of difference between

two strings. Informally, the Levenshtein distance

between two words is the minimum number of single-

character edits required to change a word into another

word. The measurement was first considered by

mailto:13511018@std.stei.itb.ac.id

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 2

Vladimir Levenshtein, and his name is used as the

distance name. The distance may also be referred as edit

distance, although the edit distance term actually refers

to a larger set of string difference measure, such as

longest common subsequence (LCS) and Hamming

distance.

Formally defined, given two strings and its character set,

the edit distance is the minimum-weight series of edit

operations that transforms the first string into the second

string. One of the simplest sets of edit operations

defined by Levenshtein in 1966 are: (1) insertion of a

single symbol, (2) deletion of a single symbol, and (3)

substitution of a single symbol. The original definition

has a unit cost, so the Levenshtein distance is equal to

the minimum number of steps to change the first string

into the second string. This definition is referred as

Levenshtein distance.

For those who are inclined to read the mathematical

definition, the Levenshtein distance between two strings

 , is given by where:

where returns if and otherwise.

For example, the Levenshtein distance between the

string "kitten" and "sitting" is 3. The steps to change

"kitten" into "sitting" are: (1) replace "k" with "s", (2)

replace "e" with "i", and (3) insert "g" at the end.

There exists several simple upper and lower bounds of

Levenshtein distance, such as: (1) it is always at least

the difference of the sizes of the two strings, (2) it is at

most the length of the longer string, (3) it is zero if and

only if the strings are equal, (4) the Hamming distance

is an upper bound of Levenshtein distance, and (5) the

triangle inequality (Levenshtein distance between two

strings is no greater than the sum of the Levenshtein

distances of the two strings from a third string).

2.3. Wagner-Fischer Algorithm

An algorithm to compute Levenshtein distance exists by

simply following the definition. The result is a

straightforward but inefficient algorithm because the

algorithm will recalculate Levenshtein distance of same

substrings many times. However, using dynamic

programming, the calculation can be computed using a

two-dimensional matrix. The resulting algorithm is

known as Wagner-Fischer algorithm. The pseudo code

for the algorithm is given below.

int levenshteindistance(

 char a[1..m],

 char b[1..n]

)

 // dp[i][j] contains levenshtein distance

 // between a[0..i] and b[0..j]

 dp: array of int[0..m][0..n]

 // the levenshtein distance of a string and

 // an empty string is equal with the length

 // of the string

 for i in [0..m] dp[i][0] = i

 for j in [0..n] dp[0][j] = j

 for j in [1..n]

 for i in [1..m]

 if a[i] == b[j]

 // no operation is required

 dp[i][j] = dp[i-1][j-1]

 else

 // select minimum levenshtein

 // distance between deletion,

 // insertion, and substitution

 dp[i][j] = min(

 dp[i-1][j] + 1,

 dp[i][j-1] + 1,

 dp[i-1][j-1] + 1

 // the levenshtein distance of the whole

 // two string is stored in the bottom-right

 // cell of the dp table

 return dp[m][n]

The pseudo code described above assumes that every

actions' cost is 1. Because the algorithm traverses a 2D

matrix, the algorithm will run in the speed of
with the required space of . A possible

improvement is to reduce the space complexity from

 to , observing that the algorithm only

requires that the previous row and current row can be

stored at any one time.

2.4. Source Code Comparison

It is desirable to have a single value to represents the

similarity of a given text. In order to do that, one should

be able to give the similarity by using the Levenshtein

distance value. Furthermore, the similarity value should

fulfill these requirements:

1. The similarity of two completely different text

should be 0.

2. The similarity of two completely identical text

should be 1.

3. The similarity of two text should be a value

between 0 and 1, inclusive.

Given two strings and , we can determine the

Levenshtein distance of the strings by using

Wagner-Fischer algorithm. To construct a percentage

value, we can compare with some value.

A lower bound of is , which is when and are

identical. An upper bound of is ,
where represents the length of the string . From it,

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 3

we are able to derive the following equation to

determine the similarity value of two strings:

where is the similarity value between two strings

and , is the Levenshtein distance between two

strings and , and and represents the length

of the strings and , respectively.

III. IMPLEMENTATION AND EXPERIMENT

3.1. Implementation

For the experiment, an implementation of the Wagner-

Fischer has been written in C++. Below are the

implementation of the algorithm.

int levenshtein(string a, string b) {

 int dp[MAX_LENGTH + 1][MAX_LENGTH + 1];

 int len_a = a.size();

 int len_b = b.size();

 // pad the strings to make it 1-based

 a = "#" + a;

 b = "#" + b;

 // dp(string, empty) = length of string

 for (int i = 0; i < len_a; i++) {

 dp[i][0] = i;

 }

 for (int j = 0; j < len_b; j++) {

 dp[0][j] = j;

 }

 // dp table building steps

 for (int i = 1; i < len_a; i++) {

 for (int j = 1; j < len_b; j++) {

 if (a[i] == b[j]) {

 dp[i][j] = dp[i-1][j-1];

 } else {

 dp[i][j] = min3(

 dp[i-1][j] + 1,

 dp[i][j-1] + 1,

 dp[i-1][j-1] + 1

);

 }

 }

 }

 // print the dp table

 for (int i = 0; i < len_a; i++) {

 for (int j = 0; j < len_b; j++) {

 cout << dp[i][j];

 if (j + 1 == len_b) {

 cout << endl;

 } else {

 cout << " ";

 }

 }

 }

 return dp[len_a - 1][len_b - 1];

}

3.2. Source Code Preprocessing

A problem with the above implementation of Wagner-

Fischer algorithm is that the length of the string to be

compared is limited by MAX_LENGTH. The size of

MAX_LENGTH determines the size of the matrix, which

cannot be larger than 512 in a standard computer.

To make the way around, an observation of source code

reveals that more than half of the characters in the

source code are whitespaces. These whitespaces can be

safely ignored, reducing the length of the source code

string.

Below are the code for source code preprocessing.

string readfile(string filename) {

 string retval;

 ifstream is(filename.c_str());

 while (is.good()) {

 char c = is.get();

 if (!isspace(c)) retval += c;

 }

 is.close();

 return retval;

}

int main(int argc, char** argv) {

 if (argc < 3) {

 string name(argv[0]);

 cout << "usage: " << name << " <file1>

<file2>" << endl;

 } else {

 string file1(argv[1]);

 string file2(argv[2]);

 string a = readfile(file1);

 string b = readfile(file2);

 if (a.length() >= MAX_LENGTH ||

b.length() >= MAX_LENGTH) {

 cout << "Length of a=" <<

a.length() << " or b=" << b.length() << " is

too long." << endl;

 } else {

 cout << levenshtein(a, b) << endl;

 }

 }

}

3.3. Experiment

The test cases for the experiment is taken from several

source codes from assignments of a C++ course, thus

making all test case source codes are written in C++.

However, the source code comparison program should

work for all kinds of source code (the implementation

provided can only read a 512-character length file at

most). All test cases compared are written for a

particular assignment problem. There are several test

cases to be tested:

1. Test case where the source code is very similar,

differing only in several syntax and variable

declaration.

2. Test case where the source code for a same

problem is written by two different people,

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 4

with the result expected should be totally

different.

3. Test case where a plagiarism attempt occurs,

where the source code variable names are

modified.

4. Test case where a plagiarism attempt occurs,

where several string literals for the program are

modified.

5. Test case where a plagiarism attempt occurs,

where parts of the source code are further

modified by rewriting parts of the code.

The test case (1) and (2) serves as a control for a source

code without plagiarism, while test case (3) and (4)

serves as the variable for plagiarism detection.

Table III.1 below shows the input for the test cases, with

length of each file after preprocessed. Note that the

preprocessed file is no longer be able to be compiled by

a C++ compiler because of the removal of all

whitespaces, ignoring the semantics of the whitespace

(whitespace needed to separate variable type and name

such as int and argc, for example).

Test

case
Case

Length of

first file

Length of

second file

1
Very little

difference
688 706

2
Different source

code
700 716

3

Plagiarism:

modified variable

names

706 706

4

Plagiarism:

modified literals

and constants

706 714

5

Plagiarism:

rewriting parts of

the code

706 674

Table III.1 The input length of each test cases

Table III.2 below shows the expected similarity value of

the test cases and the output of the source code

comparison program (the Levenshtein distance and the

similarity value). The expected similarity of test case (1),

(3), and (4) is high because the source code of (1) is

very similar and (3) and (4) is a plagiarism attempt. The

expected similarity of test case (2) is low because of the

test case represents a source code for same problem but

are written by two different people. The expected

similarity of test case (5) is low because while the case

is a plagiarism attempt, the rewriting of the source code

and movement of several source code blocks is deemed

'good' enough to fool the source code comparison

program. The similarity value is calculated using the

previous equation, while the Levenshtein distance is

calculated by using Wegner-Fischer algorithm

implementation written above.

Test case

Expected

similarity

value

Levenshtein

distance

Similarity

value

1 High 22 96.9%

2 Low 474 33.8%

3 High 41 94.2%

4 High 44 93.8%

5 Low 205 71%

Table III.2 The result of each test cases

IV. ANALYSIS

4.1. Similarity Analysis

Test case (1) reveals the algorithm works as expected,

with the similarity value of 96.9% for two very similar

files (only differing in small details, such as variable

declaration).

Test case (2) reveals that the similarity value of two

different files are actually pretty small (33.8%).

Furthermore, there is a considerable difference between

the smallest similarity value test case with this test case

(71% compared to 33.8%). This shows that the error

margin for the algorithm to throw a false detection

(detecting a non-plagiarism file as a plagiarism file) are

small, thus the algorithm are quite reliable for the

purpose.

Test case (3) and (4) reflects a small plagiarism attempt

by modifying the variable names, literals, and constants.

The algorithm manages to detect the similarity, showing

that the algorithm works. These cases have actually

happened on the selected C++ courses used as a test

case sources.

Test case (5) is a more sophisticated plagiarism attempt

by rewriting the code, while still having the same logic.

This is done by moving several movable blocks such as

variable declaration and rewriting several blocks. The

test case is expected to break the algorithm, by

providing a false pass (detecting the plagiarism code as

legal). However, the result is quite a twist; the similarity

value is still relativity high compared to (2). This shows

that Levenshtein distance is a good measurement to

detect plagiarism. Furthermore, a bound of 70% is

deemed enough to distinguish between plagiarism and

non-plagiarism source code.

4.2. Breaking the Algorithm

The experiments conducted shows that the Levenshtein

distance is a good measurement for plagiarism detection,

and a bound of 70% is deemed enough to serve as a

bound between plagiarism and non-plagiarism code.

However, the algorithm is not foolproof. Several

strategies to force a false detection or a false pass exists,

such as:

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 5

1. Adding trash codes and characters to the code.

2. Using a different procedure or function to

produce similar results.

Adding trash codes and characters to the code works by

increasing the amount of insertion, thus increasing the

Levenshtein distance. In C++, this can be done by

adding extra semicolon ending (;), whitespaces, or

adding useless program blocks. While this strategy will

easily break the algorithm, such strategies are easily

seen by a human, and creating useless program blocks is

not a relativity trivial task in a constrained environment

(in a 120-minutes laboratorium assignment, for

example). Furthermore, this strategy may not work well

on programming languages that do not ignore

whitespaces (such as Python and Ruby).

Rewriting program blocks to use a different procedure

or function works by observing that many programming

languages offers various alternatives for certain tasks.

For example, C++ offers standard input cin and cout,

but also still provides the scanf() and printf()

function from C. This increases the amount of

subsistution needed, increasing the Levenshtein distance

and reducing the similarity value. This strategy may be

avoided by forcing to use a certain function to do

something, for example by forcing to use cin and cout

instead of scanf() and printf().

4.3. Algorithm Performance

The time complexity of Wagner-Fischer algorithm is

 , where represents the string length of its

respective input. However, the hidden constants is small

because there are no preprocessing for the algorithm for

work and the main loop for matrix traversal consists of a

single if-else statement. During the experiment, attempts

to measure the speed of algorithm resulted in the speed

of 0.002 ms to 0.003 ms on a modern processor. The

algorithm is fast enough to be implemented on a

processing-heavy environment.

The space complexity of Wagner-Fischer algorithm is

 , where represents the string length of its

respective input. However, this limitation is a problem

even for modern computers; during the experiment, the

maximum input length is limited to only 719 characters.

While this maximum input length varies over the

computers, many source codes submitted for the

selected C++ courses are twice longer (around 1400 to

2000 characters). Thus, 'hacks' to make the input string

shorter are needed; for the experiment, the whitespaces

are omitted. This proved to be serendipitous, because

large amount of whitespace can increase the

Levenshtein distance value and reducing the similarity

value. Nevertheless, optimization for the algorithm can

be made, such as by observing that the algorithm only

requires that the previous row and current row can be

stored at any one time. Using the fact, the space

complexity can be reduced to .

V. CONCLUSION

The original aim to determine whether Levenshtein

distance is a good enough value for plagiarism checking

results in a positive; Levenshtein distance is a good

enough value for plagiarism. The lower bound to

determine whether a file is a plagiarism file is deemed

to be 70%. There exists strategies to fool the algorithm

but the strategies can be avoided by using several

restrictions.

For the performance of the algorithm, the Wagner-

Fischer algorithm to calculate the Levenshtein distance

is deemed fast enough for processing-heavy

environment such as web servers. However, the original

implementation of the algorithm has a weakness in the

high space complexity, limiting the source code size

able to be checked. This limitation can be avoided by

observing that the algorithm only requires that the

previous row and current row can be stored at any one

time. Using the fact, the space complexity can be

reduced to .

VI. REFERENCE

[1] Munir, Rinaldi. 2009. Diktat Kuliah IF2211

Strategi Algoritma. Program Studi Teknik

Informatika ITB.

[2] Arefin, Shamsul Ahmed. 2009. Art of

Programming Contest 2nd Edition.

[3] Halim, Steven and Halim, Felix. 2010.

Competitive Programming: Increasing the Lower

Bound of Programming Contests.

[4] Minimum Edit Distance.

http://www.stanford.edu/class/cs124/lec/med.pdf.

Accessed at May 18th, 2014.

VII. ACKNOWLEDGEMENT

This paper is written by Tito D. Kesumo Siregar,

intended for an assignment in IF2211 Algorithm

Strategy course in Bandung Institute of Technology at

2014.

The writer wants to express his gratitude to Dr. Ir.

Rinaldi Munir, M.T. and Masayu Leylia Khodra, S.T.,

M.T. as his lecturers on the course. The writer also

express his gratitude to the family and the family of

HMIF ITB (Himpunan Mahasiswa Informatika ITB).

http://www.stanford.edu/class/cs124/lec/med.pdf

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014 6

VIII. NOTES

A repository containing the source code for the

experiments, along with the test cases and a digital copy

of this document is available on the Internet at

https://github.com/tkesgar/paper-stima-levenshtein.

IX. PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

Tito D. Kesumo Siregar

NIM. 13511018

https://github.com/tkesgar/paper-stima-levenshtein

