

 Paper for IF2211 Strategi Algoritma – Sem. II Year 2013/2014

Comparison of String Matching Algorithms For

Searching Large Amount of Text

Dariel Valdano - 13512079

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

dariel.valdano@students.itb.ac.id

Abstract— There are 3 basic string matching algorithms.

The classical, naive brute-force technique it compares every

single character, stepping forward when a mismatch is found,

The Knuth-Morris-Pratt algorithm, which improvises the

naive algorithm to allow smarter shift, and the Boyer-Moore

algorithm with its peculiar reverse-searching looking-glass

method of searching. This paper will compare all three

algorithms by finding some sentence in a large corpus of text,

and finally outlines the advantages and disadvantages of each

algorithm.

Index Terms— Boyer-Moore, Knuth-Morris-Pratt, String

Matching Comparison, String Matching Algorithms

I. INTRODUCTION

From the early age of computers, the need for

searching a subset of string from a larger string becomes

more necessary. The requirement of processing string

data instead of numerical ones becomes greater and now

string matching becomes an essential part of a computer

system. Early computers process mostly numerical data

for helping in scientific computations, but nowadays

string-based data is often calculated.

String matching is particularly useful in Compilers,

Data Compressors and unpackers, Database operations,

general text-editing work, encryption and more. In

compilers, the computer might need to find a referenced

function or a variable by searching it over thousands or

even millions of lines of code. Using a naive brute force

string matching technique will require an astronomical

amount of time, and are considered to be inefficient and

ineffective. Data compressor and unpackers will also

require string matching to search for patterns in data that

can be compressed. Database systems such as MySQL

will often process millions of records at any given time,

searching for a particular record which satisfies a

predefined rule. In general text editing work, applications

such as Microsoft® Word will analyze typed sentences

on the fly, comparing it with a list of grammatical

patterns, notifying the user when a seemingly anomalous

grammar is detected. The user can then revise the

sentence easily.

The need of fast string matching algorithm is

absolutely essential to shave precious amount of time in

processing time in all the aforementioned applications.

Without a fast string matching algorithm, Compiling a

Linux kernel would took days instead of hours,

Compressing and decompressing data would took 10

times longer than it is now, word processors will be

unable to predict and observe typed sentences and

provide the relevant correction suggestions, Internet-

based search engines such as Google would took minutes

processing every query instead of milliseconds.

The world of computing as we know it today will feel

much more slower; not because the hardware that is

underdeveloped, but because of a computing-power-

wasting string matching algorithm that does not utilize the

true advancements in string matching algorithm.

There are many algorithms for string matching. The

very basic of string matching algorithm is the brute force

technique, where a string is compared to a bigger string

directly, positioning the substring (the string to be

searched) initially in line with the reference string, with

its first character location positioned in line with the first

character of the reference string. The character is then

compared on the first location. If the character is a match,

comparison is continued on the second location, until

either the entire substring is matched, of a mismatch is

found. If a mismatch is found, the entire substring will be

shifted one character to the reference string, and then they

will be re-compared. The procedure is then repeated until

either a match is found or the end of reference string is

encountered. This algorithm will be reviewed in more

detail in the respective chapter.

The second algorithm is the Knuth–Morris–Pratt

Algorithm. It is an improved version of the Brute Force

Technique, which skips an obvious mismatch when it

occurs. It precomputes a partial match table and then

skips n characters when a mismatch is found, according

to that table. This algorithm will be reviewed in more

detail in the respective chapter.

The third algorithm is the Boyer-Moore algorithm. It

uses a looking glass technique, where it finds the string

being searched for backwards through the string being

searched. Then it uses a more advanced algorithm to

decide how much shift is needed if a mismatch is found.

This algorithm will be reviewed in more detail in the

respective chapter.

 Paper for IF2211 Strategi Algoritma – Sem. II Year 2013/2014

These three algorithm will be tested and benchmarked

by searching a set of sentences in a corpus. A Text corpus

is a big file of text with structured sentences, often in

English, that can be used for linguistics research or

general research. In this paper the corpus will be used to

compare all three algorithms. The text corpus used in this

paper will be the scriptment of the movie AVATAR by

James Cameron. The time taken to search through the

corpus will be measured and compared on all three

algorithm. The author will then create a conclusion over

which string matching is best used for searching through

a text corpus.

II. THE THREE ALGORITHMS

A. Brute Force Algorithm

Brute Force string matching algorithm searches for a

string pattern in a file with brute force, meaning it uses

computing power to search for the pattern without using

any advanced algorithms that can be used. The Brute

Force algorithm tries to find the string to be looked in the

string of reference by comparing each character,

advancing one character forward if a mismatch is found.

This Algorithm can be very time intensive. For

example, if there is a reference text that contains the

string “ABCBC” repeated for one thousand times,

appended at the last with the characted “D”, and the string

to be searched for is “ABCABCABCD”, the brute force

algorithm will search every single reference text 1000 x

10, which results in 10000 character comparisons. Scale it

up to a million, and the computing power needed just to

find a string would be astronomical.

Due to those reason, it is clear that the brute force will

be the worst performing algorithm between the three, but

it will still be benchmarked for reference point.

B. Knuth-Morris-Pratt Algorithm

The Knuth-Morris-Pratt Algorithm “readies” the string

to be searched for by precomputing a table using a

function called “Border Function”. This will create a table

with columns the same size with the string length. The

KMP Border Function is defined as “the size of the

largest prefix of P[1..k] that is also a suffix of P[1..k][2]. P

is the string to be searched in the longer text. When a

mismatch is found, the entire P string is shifted as much

as the table specifies. For example, if a mismatch is found

at P[5], then the entire string is shifted as much as

BorderFunction(P[5]). This avoids wasteful comparisons,

and can improve string the string matching time.

Knuth-Morris-Pratt algorithm the advantage to the fact

that it will never need to move backward in the text to be

searched, and thus is very useful to process large files or

stream of file[2].

The Disadvantage of Knuth-Morris-Pratt is that it

works well if the alphabet size is small. When the number

of alphabet becomes very big, it will have more chances

of mismatch, and due to the large amount of mismatch,

the will also tend to occur early in the pattern, thus

reducing the speed of the Knuth-Morris-Pratt algorithm to

nearly as slow as Brute Force.

Using the previous example in the brute force

algorithm, we can see that it can shave most comparisons

off by shifting it more than one character at a time.

The algorithm was invented in 1974 by Donald Knuth,

Vaughan Pratt and James H. Morris.

B. Boyer-Moore Algorithm

Boyer-Moore Algorithm also pre-computes the string

to be searched in advance, called the Last Occurrence

Function. This function will preprocess P to find the last

occurrence at position x, where L(x) is defined as the

largest index I such that P[i]==x or -1 if no such index

Figure II.1 – example of the Knuth-Morris-Pratt Algorithm [2]

 Paper for IF2211 Strategi Algoritma – Sem. II Year 2013/2014

exists[2].

Imagine a string to be searched called T and string to

search P. When a mismatch occurs in location T[i] and

P[j], there will be three possible cases tried at once:

First, the algorithm will check whether P contains x

(where x = T[i]). If P contains x, then shift P to the right

to align to the last occurrence of x in P with T[i].

Second, if the first condition is not satisfied, because a

shift right to the last occurrence is not possible, shift P

right by one character to T[i+1].

Lastly, if neither of the first or second condition is not

satisfied, then shift P to align P[1] with T[i+1] [2].

This Algorithm is good when Knuth-Morris-Pratt is

not; it easily handle strings with large alphabet, yet slow

if the alphabet is small.

III. THE BENCHMARK

The comparison will be performed on a text corpus,

roughly 200000 characters long. The corpus used is the

scriptment from the movie AVATAR written by James

Cameron. Each algorithm will be performed on a search

multiple times, the average taken. Then all three

algorithms will be compared side by side in a graph, and

the algorithm that requires less processing time will be

considered as the best algorithm for that test.

The source code were made by the author folowing the

specifications of each algorithm, referencing to reference

[2] when possible. The program is specifically made to

test and benchmark the three algorithms. There will be

three tests:

One, will be a search on the corpus using 5 word as the

text to be searched.

Two, will be a search on the corpus using 2 entire

sentence as the text to be searched.

Three, will be a search on the corpus using an entire

paragraph as the text to be searched.

IV. TEST RESULTS

 Brute Force KMP BM

Test 1 25028546ns 19915864ns Error

Test 2 2283576ns 39538085ns Error

Test 3 2042389ns 74467964ns Error

Figure IV-1 – The test results

Due to programming errors in BM source code

algorithm, and the constraint of time, the author cannot

fix the error in the allocated time. Due to this, the Boyer-

Moore algorithm cannot be compared to the remaining

two. There seems to be a program quirk and or compiler

optimization that actually makes the brute force method

of string matching faster than the KMP equivalent.

Perhaps if further investigation is performed, the nature

of this strange enhancement can be traced and turned off

for this comparison. But due to the constrainst of time,

this could not be performed

V. CONCLUSION

From the test results, the following conclusion is made:

1. KMP is the fastest on test 1, but in the remaining

test, the Brute force is faster, due to an unknown

optimization performed by the compiler.

2. More time is needed to find out the reason to the

brute force optimization, and to fix the Boyer-

Moore source code error.

A GAS-GIANT PLANET called POLYPHEMUS,

ringed with dozens of moons which cast beauty-mark

shadows on its vast face. The ISV diminishes away

from us toward the largest MOON-- a blue and

surprisingly Earth-like world called PANDORA. The

ship dwindles to a speck against the BLUE MOON.

CUT TO: EXT. PANDORA ORBIT ISV Venture

Star drifts above a spectacular vista -- the sapphire

seas and unfamiliar continents of Pandora. CLOSE

ON ISV -- two massive “VALKYRIE” SHUTTLES

are mated to a DOCKING NODE. One of them

separates from the starship and moves away, its

thrusters FIRING in short bursts. As the shuttle

moves away, descending toward Pandora, we hear the

sound of DRUMS, building, louder and louder until

we-- CUT

Figure III-1 an Except from the corpus

Figure II.2 – example of the Boyer-Moore Algorithm [2]

 Paper for IF2211 Strategi Algoritma – Sem. II Year 2013/2014

VI. APPENDIX

 Brute Force KMP BM

Test 1 25028546ns 19915864ns Error

Test 2 2283576ns 39538085ns Error

Test 3 2042389ns 74467964ns Error

Appendix 1 – The test results

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

Test 1 Test 2 Test 3

Brute Force

KMP

BM

Appendix 2 – Visualization of the test results

VII. ACKNOWLEDGMENT

First, the author would like to express his highest

praise to God Almighty for the grace and enlightenment

that allows me to complete this paper. Author would also

like to give his biggest thanks to his parents, who’s

without their guidance, the author might not be able to

have a chance in studying this high. Author would also

like to express his thanks to Mr. Rinaldi Munir, for his

teachings allows the author to understand the concepts

behind all three string matching algorithm which this

paper is based on.

REFERENCES

[1] Cameron, James. AVATAR Movie Scriptment © 2007

TWENTIETH CENTURY FOX.

[2] Dr. Davison, Andrew. Pattern Matching Slide, WiG Lab, CoE

STATEMENT

I hereby declare that I wrote this paper with my own

writing, not adaptation, or translation of someone else’s

paper, and not plagiarism. Any citations will be properly

attributed to their original authors in the References

chapter.

Bandung, 18 May 2014

Dariel Valdano - 13512079

