
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Chemical Structure Comparison with String Matching

Fauzan Hilmi Ramadhian 13512003

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

fauzan_hilmi@students.itb.ac.id

Chemical structure comparison is an important topic in

chemical science. It is useful in modern approaches to

predicting the properties of chemical compounds and

designing chemicals with desired properties. Quite lot

techniques have been found to do the comparison. One of

the simple ways is by string matching. In this method, the

chemical structure will be converted to one dimension form

in SMILES notation. Then, the string matching algorithm

will decide how the structures differ. In this paper, two

string matching algorithms will be discussed upon their

performances on comparing the chemical structures.

Index Terms— String matching, chemical compound

comparison, SMILES, Knut-Moris-Pratt, Boyer-Moore

I. INTRODUCTION

Chemistry is an interesting an important topic

nowadays. Why? Because everything are made of

chemicals. Cars, buildings, handphones , plants, even

humans are made of chemical elements. Besides that,

chemistry helps human to understand what is going on

this world. Various events that happened everyday can

be explained from its point of view. Another importance,

and the most important, is that chemistry made human life

a lot easier. Many processes like the made of foods,

drinks, soaps, and medicines are done because of their

chemical process.

One important subject in chemistry world is chemical

structure comparison. It has many important applications.

The main usage of structure comparison is to determine

the molecules properties differences. Other applicative

purposes are to determine the best components of a

particular object and discover new drugs.

Many techniques have been invented to do the

structure comparison. Some of them are quite complex.

However, the simplest way is to check the structure image

itself. Check whether one structure is same or not with the

other one. In this simple technique, there are some ways to

do so. A really simple way is to convert the structure

image to a line of ASCII strings, then do the comparison

with string matching algorithm.

Upon converting the structure, there is one standard

convention to represent molecule structures in ASCII

string. It is SMILES (Simplified Molecular Input Line Entry

Specification). All complex structure can be drawn

precisely by this standard. SMILES will help the

comparison too, since it has definite structure of strings.

For the SMILES string comparisons, a string matching

algorithm is needed. There are several algorithms like so.

Two simple and quite simple examples are Knuth-Morris-

Pratt (KMP) and Boyer-Moore algorithm. Each of them has

their own advantages and disadvantages.

In this paper, the SMILES structure comparison by

KMP and Boyer-Moore algorithms will be discussed

further. Each of them has its implementation example in

Java. Later, their performances will be compared to

determine which is better to do the molecule structure

comparison.

II. THEORY

A. Chemical matters

 Matters are all things that have mass and occupied

mass. In chemistry, the matters are divided into smaller

groups with distinct definitions and properties. In general,

there are three matter types. They are atom, element,

molecule, compound, and mixture.

 Atom is the fundamental matter of all matters. Atom is

the smallest particle of an element. It consists of a central

nucleus containing protons and neutrons. The electrons

revolve around the nucleus in imaginary paths called

orbits or shells.

 Element is a matter made up of a kind of atoms. Each

element is distinguished by its atomic number, atomic

weight, and mass number. Atomic number is the number of

protons in the nucleus. Atomic weight is number of times

an atom of that element is heavier than an atom of

hydrogen. Mass number is the total number of protons

and neutrons in the nucleus of an atom.

 Molecule is a group of two or more atoms held together

by chemical bonds. The atoms can be from the same or

different elements. For example, two atoms of oxygen (O)

combine to form a molecule of oxygen (O2) and one atom

hydrogen (H) with two atoms of oxygen (O) form a

molecule of water (H2O).

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 Chemical compound is a class of molecule. A compound

is formed when the elements are chemically combined in a

fixed proportion. For example, in H2O, the

hydrogen and oxygen atoms are combined in 2:1 ratio.

 Just like compound, chemical mixture is a class of

molecule. The difference is that mixture is not chemically

formed from its elements. Also, the elements may not be in

a fixed ratio. The example for this is syrup and sand-water

mixture.

 From here, the term “chemical structure” or “structure”

is referred to chemical element or molecule.

B SMILES

 SMILES (Simplified Molecular Input Line Entry

Specification) is a chemical nomenclature to represent

element and molecule structures in one dimension. One

dimension here means that the structures are written in a

line notation using ASCII strings. Usually, chemists use a

kind of software to convert the 2 or 3 dimension molecule

structure to SMILES. Conversely, the SMILES can be

converted to 2 or 3 dimension structure.

 Original SMILES was invented by David Weininger at

the USEPA Mid-Continen Ecology in Duluth, USA in the

1980s. Gilman Veith and Rose Russo (USEPA) and Albert

Leo with Corwin Hansch (Pomona College) were

acknowledged for their parts in the early development for

supporting the work. Also Arthur Weininger (Pomona;

Daylight CIS) were acknowledged for assistance in

programming the system. The Enviromental Protection

Agency funded the initial project to develop SMILES.

SMILES has since been modified and extended by other

parties, most notably by Daylight Chemical Information

Systems.

 The main advantage of SMILES is its simplicity. It is

very easy to read and write. It also can be memory-

efficiently stored in data drive. Another advantage of

SMILES is that it is easy to analyzed, as well as in

structure comparison which is discussed on this paper.

 There are some rules which must be obeyed upon

converting between the 2/3 structure and SMILES. Here

are them.

Atoms

 Atoms are represented by the standard abbreviation

of the chemical elements, in square brackets. Brackets can

be omitted for the "organic subset" of B, C, N, O, P, S, F,

Cl, Br, and I. All other elements must be enclosed in

brackets. If the brackets are omitted, the proper number of

implicit hydrogen atoms is assumed.

 An atom holding one or more electrical charges is

enclosed in brackets, followed by the symbol H if it is

bonded to one or more atoms of hydrogen, followed by

the number of hydrogen atoms (as usual one is omitted),

then by the sign '+' for a positive charge or by '-' for a

negative charge. The number of charges is specified after

the sign (except if there is one only); however, it is also

possible write the sign as many times as the ion has

charges. The symbol `*' ("star") is treated by SMILES as a

valid atomic symbol meaning "unspecified atomic number"

and is represented as an atom of atomic number zero.

 Here are some examples of SMILES representation of

element / molecule structures.

Table 1.1 Atom representations on SMILES
1

Depictions SMILES Remark

[S] Defaults inside brackets:

mass unspecified, charge

0, Hcount 0.

[Au] Second character of 2-

character symbols is

lower case.

C Normal valence of

carbon is 4

P Lowest normal valence

of phosphorous is 3.

[OH-]

or

[OH-1]

If charge value is

missing, 1 is assumed,

i.e., `+' is equivalent to

`+1' and `-' is equivalent

to `-1'

[Fe+2]

or

[Fe++]

Charge sign may be

repeated or have a

signed value, e.g., `++' is

equivalent to `+2'.

[235U] A leading integer

represents a specified

atomic mass.

[*+2] An atom of unknown

atomic number with a +2

formal charge.

Bonds

 In SMILES, Single, double, triple, and aromatic bonds

are represented by the symbols `-', `=', `#', and `:',

respectively. Adjacent atoms without an intervening bond

symbol connected by a valence-dictated bond (typically a

single or aromatic bond). `-' (single) and `:' (aromatic) bond

symbols may always be omitted on input.

 Bonds between aliphatic atoms are assumed to be

single unless specified otherwise and are implied by

adjacency in the string. Ring closure labels are used to

indicate connectivity between non-adjacent atoms in the

SMILES string.

1
 Table was taken from

http://www.daylight.com/meetings/summerschool98/course/dave/sm

iles-atoms.html on 17 May 2014, 9:26 PM

http://www.daylight.com/daycgi/depict?5b535d
http://www.daylight.com/daycgi/depict?5b41755d
http://www.daylight.com/daycgi/depict?43
http://www.daylight.com/daycgi/depict?50
http://www.daylight.com/daycgi/depict?5b4f482d5d
http://www.daylight.com/daycgi/depict?5b46652b325d
http://www.daylight.com/daycgi/depict?5b323335555d
http://www.daylight.com/daycgi/depict?5b2a2b325d

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 Here are some notable examples.

Table 1.2. Chemical bonds representations e in SMILES
2

Depiction SMILES Remark

CC

or

C-C

or

[CH3]-[CH3]

Adjacent

aliphatic atoms

are assumed to

be bonded by a

single bond: the

single bond

symbol `-' is not

needed on input.

C=O

or

O=C

Double bonds

are represented

by an equals

sign. Note that

the order of input

doesn't matter

(SMILES may

start with any

atom).

C#N

or

N#C

Triple bonds are

represented by a

hash sign.

C=C

or

cc

Ethene is

normally written

C=C, but the

default bond

between non-

aromatic sp2

atoms may be a

double bond.

C=CC=C

or

cccc

It’s not always

double bond.

(Butadiene is

normally written

C=CC=C.)

Branching

 Branches are described with parentheses. Substituted

rings can be written with the branching point in the ring.

SMILES specifies no predefined limit to how deep

branching may be nested. Most implementations define

such a limit, typically between 10 and 50.

 Here are few examples.

Table 1.3. Branching representations e on SMILES
3

Depiction SMILES Remark

CC(C)C(=O)O If needed, bond

symbols should

appear inside

branches.

2
 Table was taken from

http://www.daylight.com/meetings/summerschool98/course/dave/sm

iles-bonds.html on 17May 2014, 9:42 PM
3
 Table was taken from

http://www.daylight.com/meetings/summerschool98/course/dave/sm

iles-branching.html on 17 May 2014, 9:57 PM

FC(F)F

or

C(F)(F)F

Branches may be

stacked. One can

start with any

atom equally well.

CCCC(C(=O)O)

CCC

Branches may be

nested.

Rings

 Ring closure bonds are specified by inserting matching

digits to the specifications of the joined atoms, with the

bond symbol preceding the digit, if needed. The ability to

re-use ring closure digits makes it possible to specify

structures with more than 10 rings. Structures with more

than 10 ring closures may be specified by prefacing a two

digit number with percent(%) sign. For example,

C2%13%24 is a carbon atom with ring closures 2, 13, and

24.

 Here are more notable examples.

Table 1.4. Ring representation in SMILES
4

Depiction SMILES Remark

C1CCCCC1 If unspecified, the default

bond order for the ring

closure is the same as with

any other bond.

C1=CCCCC1

C=1CCCCC1

C1CCCCC=1

C=1CCCCC=1

The order of ring closure

bonds may be specified as

long as they don't conflict,

e.g, C=1CCCCC-1 is not

right

c12c(cccc1)cccc2

same as

c1cc2ccccc2cc1

Atoms can have more than

one ring closure.

c1ccccc1c2ccccc2

same as

c1ccccc1c1ccccc1

A ring closure digit may be

reused if desired.

C. Chemical structure comparison

 Upon comparing two molecules, say molecule 1 for the

first and molecule 2 for the second, there are 4 outcome

possibilities. The first result is equal. It happens when

molecule 1 really has no difference with molecule 2. The

second possibility is substructure. It means that molecule

2 contains molecule 1. The third kind is the reciprocal of

the last one, which is superstructure that means molecule

1 contains molecule 2. Finally, the last possible result is

different. It is when anything happens other than the first

three.

4
 Table was taken from

http://www.daylight.com/meetings/summerschool98/course/dave/sm

iles-rings.html on 17 May 2014, 10:07 PM

http://www.daylight.com/daycgi/depict?4343
http://www.daylight.com/daycgi/depict?433d4f
http://www.daylight.com/daycgi/depict?43234e
http://www.daylight.com/daycgi/depict?6363
http://www.daylight.com/daycgi/depict?63636363
http://www.daylight.com/daycgi/depict?434328432943283d4f294f
http://www.daylight.com/daycgi/depict?464328462946
http://www.daylight.com/daycgi/depict?434343432843283d4f294f29434343
http://www.daylight.com/daycgi/depict?4331434343434331
http://www.daylight.com/daycgi/depict?433d31434343434331
http://www.daylight.com/daycgi/depict?63313263286363636331296363636332
http://www.daylight.com/daycgi/depict?63316363636363316331636363636331

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

D. String Matching Algorithms

String matching problem is an important problem in

computer science. The problem states that given a string

text T, decides whether another string pattern P is found

within T or not. In this paper, the problem extended to

decide if T contains P, find out is T=P or not. And if P is

not in T, decide is T in P or not. These extensions are

adaptations so that the string matching algorithm can

handle all chemical structure comparison results, whether

it is similar, substructure, superstructure, or different.

There are many algorithms that can solve this problem.

However, only two that will be discussed on this paper.

They are Knuth-Morris-Pratt(KMP) and Boyer-Moore

algorithms.

Knuth-Morris-Pratt (KMP) Algorithm

 KMP algorithm looks for the pattern in the text in a left-

to-right order. It is like the traditional (brute-force)

algorithm, only it is more efficient by employing

observation when a mismatch happens, the word

embodies sufficient information to determine where the

next match could begin. Thus, it is skipping wasteful

examination of previously matched characters.

 KMP uses a function called border function or failure

function to determine how far the “jump” must be done to

be efficient. The function executed before the comparison

process to find matches of prefixes with the pattern itself.

Here is a pseudo-code of the function.

The border function maps j to the length of the longest

prefix of P that is a suffix of P[1..j], encodes repeated

substrings inside the pattern itself.

After counting the failure function, the main algorithm

begins. Let’s say that Text = T and Pattern = P. In each

comparison, if a mismatch occurred at P[j], then j = f(j)+1.

Then, shift P to the right as long as j and do the

comparison again. For clearer view, here is the pseudo-

code.

Boyer-Moore Algorithm

 This algorithm works by scanning the characters from

right to left beginning with the rightmost character. During

the testing of a possible placement of pattern P against

text T, a mismatch of text character T[i]=c with the

corresponding pattern character P[j] is handled as follows:

if c is not contained anywhere in P, then shift P completely

past T[i]. Otherwise, shift P until an occurrence of c in P

gets aligned with T[i].

Generally, Boyer-Moore algorithm is based on two

techniques. They are the looking-glass and character jump

technique. The looking-glass technique means that the

algorithm searches P in T by moving backwards through

P, starting at its end. Then, the character jump technique

means that when a mismatch occurs at T[i]=c and so T[i] ≠

P[j]. In that case, there are 3 possibilities.

 If P contains c somewhere, try to shift P right to

align the last occurrence of c in P with T[i].

 If P contains c somewhere, but a shift right to the

last occurrence of c is not possible, shift P right

by one character to T[i+1].

 If above cases are not happened, shift P to align

P[1] with T[i+1].

Just like KMP, Boyer-Moore needs compute a pre-

processed function called last occurrence function. This

function takes a character c from the alphabet then

specifies how far may shift the pattern P if c is found in the

text that does not match the pattern. Here is the general

function.

last(c) = i, index of the last occurrence c in P

-1, if c is not in P

 After counting the function, the main algorithm begins.

Here is the pseudo-code.

KMP BORDER FUNCTION (P)

Input: Pattern with m characters

Output: Border function f for P[i . . j]

i ← 1

j ← 0

f(0) ← 0

while i < m do

 if P[j] = P[i]

 f(i) ← j +1

 i ← i +1

 j← j + 1

else if

 j ← f(j - 1)

else

 f(i) ← 0

 i ← i +1

KNUTH-MORRIS-PRATT (T, P)

Input: Strings T[0 . . n] and P[0 . . m]

Output: Starting index of substring of T

matching P

f ← compute failure function of Pattern P

i ← 0

j ← 0

while i < length[T] do

 if j ← m-1 then

 return i- m+1 // we have a match

 i ← i +1

 j ← j +1

 else if j > 0

 j ← f(j -1)

 else

 i ← i +1

return -1 //no match

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

III. STRING MATCHING ALGORITHMS

IMPLEMENTATIONS

For the sake of testing the algorithms’ performance,

Author has been created their implementations in Java.

Each program used one algorithm. They received two

string inputs then output the result as equal, substructure,

superstructure, or different. There is no input validation;

all inputs are assumedly in valid SMILES string. For

performance comparison, each program counts the

execution time needed in nanoseconds. Later, the times

will be compared on each other.

Hemoglobin (C66H111N15O21) , benzene (C6H6), and

aspirin (C9H8O4) are used as example. They are used

because their quite long structure. Note that benzene is

substructure of hemoglobin, and aspirin is different with

the other two.

 Here are SMILES representations of each molecule

Table 3.1. SMILES representation of hemoglobin

benzene, and aspirin.

Name SMILES

Hemoglobin O=C(N[C@H](C(=O)O)CC(C)C)[C@@H]

(NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[

C@@H](NC(=O)[C@@H](NC(=O)[C@@H]

(NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[

C@@H](NC(=O)[C@@H](NC(=O)[C@@H]

(NC(=O)[C@@H](NC(=O)[C@@H](N)C)CO)

CC(C)C)CC(=O)O)CCCCN)Cc1ccccc1)CC(C)C

[C@H](O)C)C(C)C

Benzene c1ccccc1

Aspirin O=C(OCC)C

Here are the algorithm implementations.

Main class

Input: Text with n characters and Pattern with m

characters

Output: Index of the first substring of T matching P

Compute function last

i ← m-1

j ← m-1

repeat

 If P[j] = T[i] then

 if j=0 then

 return i // we have a match

 else

 i ← i -1

 j ← j -1

 else

 i ← i + m - Min(j, 1 + last[T[i]])

 j ← m -1

until i > n -1

Return -1 //No match

 public static void main(String[] args)

 {

 Scanner in = new Scanner(System.in);

 System.out.println("Enter molecule 1

SMILES:");

 String text = in.next();

 System.out.println("Enter molecule 2

SMILES:");

 String pattern = in.next();

 long tStart = System.nanoTime();

 //int posn = kmpMatch(text, pattern);

UNCOMMENTED if KMP is used

 int posn = bmMatch(text, pattern);

//COMMENTED if KMP is used

 long tEnd = System.nanoTime();

 long tDelta = tEnd - tStart;

 if(posn == -1){

 System.out.println("Result : Molecule

1 is DIFFERENT with Molecule 2");

 }else{

 if (text.length()==pattern.length())

{

 System.out.println("Result :

Molecule 1 is EQUAL with Molecule 2");

 }

 else if

(text.length()>pattern.length()) {

 System.out.println("Result :

Molecule 1 is SUPERSTRUCTURE of Molecule 2");

 }

 else {

 System.out.println("Result :

Molecule 1 is SUBTRUCTURE of Molecule 2");

 }

 }

 System.out.println("Execution time : "

+tDelta+ " nanoseconds");

 in.close();

 }

};

http://www.chemspider.com/Molecular-Formula/C66H111N15O21
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Oxygen

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

A. KMP Algorithm Implementation

Algorithm

Results

Fig 3.1. Result with molecule 1 = hemoglobin and

molecule 2 = hemoglobin

Fig 3.2. Result with molecule 1 = benzene and molecule

2 = hemoglobin

Fig 3.3. Result with molecule 1 = hemoglobin and

molecule 2 = benzene

Fig 3.4. Result with molecule 1 = hemoglobin and

molecule 2 = aspirin

public static int kmpMatch(String text,String pattern)

 {

 if (pattern.length()>text.length())

 {

 String temp = pattern;

 pattern = text;

 text = temp;

 }

 int n = text.length();

 int m = pattern.length();

 int fail[] = computeFail(pattern);

 int i=0;

 int j=0;

 while(i <n){

 if(pattern.charAt(j) ==

text.charAt(i)){

 if(j == m-1){

 return i-m+1;

 }

 i++;

 j++;

 }else if(j>0)

 {

 j = fail[j-1];

 }else{

 i++;

 }

 }

 return -1;

 }

 //Border function

 private static int[] computeFail(String pattern)

 {

 int[] fail = new int[pattern.length()];

 int k, q;

 fail[0] = -1;

 q = 1;

 k = -1;

 for (q=1;q<pattern.length(); q++)

 {

 while ((k >= 0) &&

(pattern.charAt(q) != pattern.charAt(k+1)))

 {

 k = fail[k];

 }

 if (pattern.charAt(q) ==

pattern.charAt(k+1))

 {

 k = k + 1;

 }

 fail[q] = k;

 }

 //Increment all elements

 int i;

 for (i=0; i<pattern.length(); i++)

 {

 fail[i]++;

 }

 return fail;

 }

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

B. Boyer-Moore Algorithm Implementation

Algorithm

Results

Fig 3.5. Result with molecule 1 = hemoglobin and

molecule 2 = hemoglobin

Fig 3.6. Result with molecule 1 = benzene and molecule

2 = hemoglobin

Fig 3.7. Result with molecule 1 = hemoglobin and

molecule 2 = benzene

Fig 3.8. Result with molecule 1 = hemoglobin and

molecule 2 = aspirin

 As can be seen, all tests give true result. Note that

these tests are performed on a hardware with these

specifications.

Laptop name : Xenom QAL 31

Processor : Intel
®
 Core™ i7-3610QM CPU @2.30

GHz

RAM : 8.00 GB

Operating System : Windows 7 Home Premium 64-

bit Service Pack 1

IV. ANALYSIS

In summary, here are the test results.

Table 4.1. Tests time results

TC/time (ns) KMP Boyer-Moore

Test case 1 119586 206152

Test case 2 57562 96383

Test case 3 95936 56224

Test case 4 64701 108876

public static int bmMatch(String text, String pattern)

 {

 if (pattern.length()>text.length())

 {

 String temp = pattern;

 pattern = text;

 text = temp;

 }

 int last[] = buildLast(pattern);

 int n = text.length();

 int m = pattern.length();

 int i = m-1;

 if(i>n-1)

 {

 return -1;

 }

 int j = m-1;

 do{

 if(pattern.charAt(j) ==

text.charAt(i))

 {

 if(j==0)

 {

 return i;

 }else{

 i--;

 j--;

 }

 }else{

 int lo =

last[text.charAt(i)];

 i = i+m -

Math.min(j,1+lo);

 j = m-1;

 }

 } while(i<= n-1);

 return -1;

 }

//Last occurrence function

 private static int[] buildLast(String pattern)

 {

 int last[] = new int[128];

 for(int i =0; i<128;i++){

 last[i] = -1;

 }

 for(int i=0;i<pattern.length(); i++)

 {

 last[pattern.charAt(i)] = i;

 }

 return last;

 }

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 As can be seen, KMP looks more efficient than Boyer-

Moore, with 3 results are faster against 1. Why this could

happen?

 KMP is faster than Boyer-Moore when the input strings

contain a lot of repeatedly characters. Because the

characters in SMILES strings usually appear multiple times

to represent the multiple appearances of the elements, the

string matching in SMILES is faster with KMP algorithm

rather than Boyer-Moore’s.

 It should be noted that even though KMP is better than

Boyer-Moore, their performances only differ slightly. In

this test, the largest execution time difference on a test

case is about 80000 nanoseconds or about 0.008

milliseconds. This is really a small time difference for a

quite large input string. Thus, for SMILES string matching,

it can be safely said that KMP and Boyer-Moore

performances are quite same.

V. CONCLUSION

Molecule structure comparison is one important subject

in chemistry science. It has many applications in humans’

life. A simple way to do so is by comparing the molecules

structure image. A simpler way is to convert the image to

SMILES string, then compare it by simple string matching

algorithm. Two examples of such algorithms are KMP and

Boyer-Moore algorithms.

After a test, it is proven that KMP is more efficient than

Boyer-Moore in SMILES strings comparison. However,

because their performances only differ slightly, it can be

assumed that their performances are same.

VII. ACKNOWLEDGMENT

First of all, Author would say thank you to Almighty

God because of His mercy and grace Author can finish

this paper. Then, Author also wants to express his thanks

to Mr. Rinaldi Munir, and Mrs. Masayu Leylia Khodra,

whose give helpful advices and assistances. Finally,

Author wants to say thank you to his parents and beloved

friends who are always give Author strengths and spirits

to pass the struggles during the writing of this paper.

REFERENCES

[1] Daylight Chemical Information Systems, Inc. “SMILES

Tutorial,”

http://www.daylight.com/meetings/summerschool98/cours

e/dave/smiles-intro.html, accessed on May 17, 2014 08:10

PM

[2] Munir, Rinaldi, 2009. “Diktat Kuliah IF2211 Strategi

Algoritma,” Program Studi Teknik Informatika STEI ITB

 [3] Rashid bin Muhammad. “Knuth-Morris-Pratt

Algorithm,”

http://www.personal.kent.edu/~rmuhamma/Algorithms/M

yAlgorithms/StringMatch/kuthMP.htm, accessed on May

18, 2014 08:37 PM

 [4] Rashid bin Muhammad, “Boyer-Moore Algorithm,”

http://www.personal.kent.edu/~rmuhamma/Algorithms/M

yAlgorithms/StringMatch/boyerMoore.htm, accessed on

May 18, 2014 08:45 PM

 [5] Syvum Technoogies Inc. “Chemistry : Atoms,

Molecules, Elements and compounds ,”

http://www.syvum.com/cgi/online/serve.cgi/squizzes/che

m/atomic2.html, accessed on May 17, 2014 11:21 AM.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 19 Mei 2014

Fauzan Hilmi Ramadhian 13512003

