
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Face Recognition using Approximate String Matching

Mario Filino (13512055)1

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1mario.filino@students.itb.ac.id

Abstract—String matching algorithm is a very useful

algorithm in pattern matching that can be used to match any

patterns that can be represented in strings or sequence. This

paper will discussed how string matching can be used as a

method for face recognition. We will focus on the

implementation using approximate string matching. In order

for face images to be implemented in pattern matching, they

have to be represented in representation supported for the

usage of string matching. We use one type of representation

which is to represent data of facial features in a sequence of

strings with each strings being measurable facial feature

data.

Index Terms—Face recognition, approximate string

matching, Levenshtein distance, biometric

I. INTRODUCTION

String matching is one of many algorithm used in

many applications. In genetics biology, string matching

can be used to analyze the similarity in chains of RNA or

DNA, it can be used in biometric to identify speakers in

voice recognition technology or identify a person based

on their fingerprint or iris for various purposes whether it

is for security or other purposes. In biometrics, this string

matching algorithm can also be used in face recognition

technology by identifying faces based on their contour and

facial features.

This technology can be embedded in a camera for

photography purposes, or even for security purposes. As

the world became more and more developed, the demands

for a better security became higher. Nowadays, password

based authentication can easily be hacked. Here biometric

identification offers a more secure and robust method for

authentication. In biometric identification, face

recognition provides the least intrusive method for

authentication.

Face recognition are a technology implemented as

computer application to identify person using digital

images of their faces and comparing their facial features

with facial database. As an authentication method, they

are robust unless someone had a plastic surgery, secure,

and the least to invade privacy as people are unaware that

they are being authenticated when they are in a certain

area. Even though authentication using face recognition is

not completely fool proof, they are a lot harder to hack

than password-based authentication and offers higher

integrity in security.

If you want to get a grasp of face recognition

technology you can take a look at facebook. They are

currently developing a new facial recognition technology

known as “DeepFace” where they can identify and

recognize faces in photos then identify who they are with

near human level of accuracy that will changed their prior

facial recognition technology that is able to suggest

friends to tag.

This face recognition technology is created based on

the ability of human to recognize and distinguish people

based on their faces. Facial recognition technology were

then created to distinguish faces the way human beings do

by analyzing facial features and contour. Every people

have a unique facial features that don’t change over time

that can be used as distinguishable features between faces.

Face recognition technology consist of two parts: the

basic face recognition with the ability to recognize and

differentiate faces from their surrounding background and

the main face recognition to differentiate and identify

faces based on their facial features.

Previously, face recognition technology uses 2D

images or photos to extract unique facial features. In order

for it to be accurate photo/ image has to be taken with the

person looking towards the camera. We can see that this

would lead to inaccuracy due the inability for surveillance

cameras to take pictures from perfect angles. A slight

variance in lighting condition can also lead to reduction of

accuracy. A newer method uses algorithm or 3D cameras

to create 3D model of faces and use them to extract

unique facial features. Using these method, accuracy can

increase significantly as they are not affected by lighting

condition and images can be taken from any angle. This

paper will not discussed the extraction of facial features

using 3D models and the process of creating 3D models

but simply using 2D images of a person from the front

looking straight towards the camera.

This paper will discussed on the extraction of unique

facial features from 2D digital image of faces and how

string matching algorithm can be used to identify faces

from the facial database by comparing facial features. It is

assumed that images are taken in controlled environment

and lighting condition. It is also assumed that every parts

of the faces are visible in the image therefore excluding

the partial face occlusion problem often occurs in face

recognition technology.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

II. THEORIES

2.1 String Matching

String matching are a class of algorithm that is used to

find location of certain string also known as pattern in a

vastly larger amount of text or string. String matching is a

specific type of pattern matching where string are used as

a form of pattern to be searched among another string

usually larger in length. In general, problems involving

comparison of entities that can be represented as

sequences, vector, or string can be solved by using string

matching. There are many string matching algorithm each

with different complexity, advantages and their

disadvantages. This paper will cover briefly three of the

many string matching algorithms: brute force, Knuth-

Morris-Pratt, and Boyer-Moore.

Here m correspond to the length of pattern and n

correspond to the length of text. Brute force string

matching is an algorithm to find a finite length of string

called pattern in another string by trying each position.

Brute force algorithm has a worst-case complexity of

O(mn), best case complexity of O(n) and average

complexity of O(m + n).

Knuth-Morris-Pratt algorithm is a string matching

algorithm which could determine based on the border

function where the next match could begin. KMP

algorithm consist of algorithm for generating border

function table has a complexity of O(m), and a matching

algorithm with the complexity of O(n). KMP algorithm

has a total complexity of O(m + n).

Boyer-Moore algorithm is a string matching algorithm

that compares character from the end of the pattern to the

beginning of a pattern. By using last occurrence function

table, the algorithm will determine where the pattern has

to jump depending on one of three cases that could occur

on mismatch. Boyer-Moore has a worst-case time

complexity of O(mn) but often runs on a much better time

complexity of O(n/m) on natural-language text. For a

more detailed explanation on these three algorithm, please

refer to [1].

2.2 Approximate String Matching

Approximate string or pattern matching often called as

fuzzy string matching is a specific technique of pattern

matching where pattern approximately matches a string

rather than exactly. In this sense, approximate string

matching is a method that addresses string matching and

can tolerate error. Where a pattern and string has to be

exactly the same to be accounted as matched string by

using exact string matching, approximate string matching

can quantify the dissimilarities and similarities between

pattern and string. Dissimilarities can be calculated by

using edit distance which is by calculating the minimum

amount of operation required to transform one string into

an exact match with another string or pattern with its

corresponding string. Whereas similarities can be

calculated by calculating the already matched characters.

Pattern is said to match a certain string in a batch of string

if the pattern has the least number of dissimilarities with

that certain string compared to other strings. To calculate

this dissimilarities, edit distance is used. There are several

variation of edit distance each with their own set of

operation. In this paper, we use Levenshtein distance

which has the simplest set of string edit operation:

insertion, deletion, and substitution.

Let X = {x1, x2, x3,…, xm} be a set of symbol with size m

and Y = {y1, y2, y3,… ,yn} be another set of symbol with

size n. The distance between X and Y is the minimum

amount of cost of operations required to transform set X

into set Y. By using Levenshtein distance, operations are

restricted to insertion, deletion, and substitution which are

denoted by δ(a,b) which transform symbol ‘a’ in set X

into symbol ‘b’. Insertion, denoted by δ(ε,b) insert symbol

‘b’ into set X with ε denoting an empty string. Deletion,

denoted by δ(a,ε) delete symbol ‘a’ from set X.

Substitution, denoted by δ(a,b) substitute symbol ‘a’ in set

X with symbol ‘b’. It has to be noted that cost of the three

operation not need to be the same. The cost of the three

operation are application dependent. To better understand

Levenshtein distance and how they are used to calculate

distance, consider an example below.

Suppose we have a pattern “mispeld” and a set of string

{“misplace”, “misspelled”, “mislead”}. The pattern will

match the string with the least distance between the

pattern and string. In this example, assume that deletion

and insertion has a cost of 1 and substitution has a cost of

2 because substitution can be represented by one deletion

and one insertion.

String “mispeld” and “misplace” has a distance of 7 by the

following transformation:

1. δ(‘l’,’a’) : mispeld → mispead (cost : 2)

2. δ(‘e’,’l’) : mispead → misplad (cost : 2)

3. δ(‘d’,’c’) : misplad → misplac (cost : 2)

4. δ(ε,’e’) : misplac → misplace (cost : 1)

Total cost for transforming “mispeld” into “misplace”

is 7.

String “mispeld” and “misspelled” has a distance of 3 by

the following transformation:

1. δ(ε,’s’) : mispeld → misspeld (cost : 1)

2. δ(ε,’l’) : misspeld → misspelld (cost : 1)

3. δ(ε,’e’) : misspelld → misspelled (cost : 1)

Total cost for transforming “mispeld” into

“misspelled” is 3.

String “mispeld” and “mislead” has a distance of 4 by the

following transformation:

1. δ(‘l’,’a’) : mispeld → mispead (cost : 2)

2. δ(‘p’,’l’) : mispead → mislead (cost : 2)

Total cost for transforming “mispeld” into “mislead”

is 4.

Because the string “mispled” has a least distance with

string “misspelled”, the pattern “mispeld” matches the

string “misspelled”.

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

We will use dynamic programming to calculate

Levenshtein distance as it offers flexibility and

adaptability to different operation cost. The edit distance

between A and B is given by the following recurrent

equation calculating the smallest of the three

possibilities:[2]

Figure 2.1 Levensthein distance recurrent equation

Here is the pseudo code for calculating Levensthein

distance using dynamic programming: [2]

Figure 2.2 pseudo code for calculating edit distance

2.3 Biometrics and Facial Representation

Biometrics are quantifiable data that are related to

human biological characteristics. Biometrics are often

used in authentication system and access control.

Biometric system in general consist of five components:

sensor, signal processing algorithm, data storage,

matching algorithm, and decision process. This paper will

focus on the component of matching algorithm in

biometric identification.

Those system rely on the measurable characteristic of

human that can be checked. In order for it to be used as an

authentication, those biological traits have to be unique

among individuals. There are several biological

measurement that can be used as in authentication system,

each offers a unique measurement among individuals: face

using unique facial features, fingerprint, hand geometry,

retina (capillary vessels located at the back of eye, iris,

signature, and voice. [3] All these traits are measurable and

are able to be represented in string, sequence, or pattern

and therefore able to exploit string matching algorithm for

identifying similarities and dissimilarities between these

biological traits. This paper will focus on using face as a

biological traits as face recognition offers the least

intrusive method for authentication.

In order for biometrics to be used for authentication

using string matching, they somehow has to represented in

representation that support the usage of string matching.

Measurable data of these biological traits can be

represented into pattern in forms of string or sequence. In

face recognition technology, each individual faces can be

represented in a sequence of facial features.

There are several method to represent facial traits in

pattern some uses global features extracted by using

subspace method such as the eigenface method [6] using

set of eigenvector addressing the problem of face

recognition. Eigenface method project the whole face into

a linear subspace to capture the face variations. [6] These

eigenfaces form a set of all images to construct covariance

matrix. Other methods use local features instead of global

features to extract distinguishable facial characteristic

from individual faces from images or photos. This paper

will address the latter method by extracting unique local

facial features, represent them as pattern in form of string

or sequence of facial features. Several method for

extracting these local features are: using vector quantized

pixels, use a battery of spatially localized Gabor filter,

histogram of local pattern features, and histogram of local

binary pattern features extracted from orientation

images.[6] These methods will not be covered in this paper.

The first process in face recognition is the ability of

the algorithm to recognize and distinguish faces from its

surrounding background. This is done by searching for a

general shape of the head in an image or photo whether

they are oval, circle, egg-shaped, etc. Face recognition

will then localize the area around the face for facial

feature extraction.

The first thing a face recognition technology do is

matches the shape of the head with the stored head shape

in facial database. If they match up, matching procedure

continues with local facial features, if not they searches

for the next face in facial database. The next thing it looks

for is facial features that won’t change over time (refer to

the image below) such as: eye width, distance between

eyes (blue), distance between eye and mouth and the

distance of mouth from peak to peak (blue), distance

between each side of eye to each side of ear shown in red

(this forms a solid and valid measurement because

distance between eyes and ears won’t change unless

someone gets a surgery), distance between eye and nose

(yellow), distance between the center of face to ear shown

in purple (nose to ear), distance from the center of both

eyes to tips or bottom part of nose and cheekbone

(brown), distance between the peak of mouth and bottom

of jaw (magenta).

Figure 2.3 Facial Features measurement area

(http://www.uni-regensburg.de/)

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

These unique features are than represented in

sequences of facial features measurement for matching

purpose. In this paper, we assume that measurements are

taken in mm without concerning the method to extract

those measurements regarding picture quality and pixel

size. Sequences of measurement of facial features are

represented in strings of facial features (FF) below with

each string separated by null.

FF = F1 ∅ F2 ∅ F3 ∅ … ∅ Fn

F1 being distance between eyes, F2 being distance

between eyes and mouth, F3 being distance between

mouth peaks, F4 being distance between eyes and ears, F5

being distance between eyes and nose, F6 being distance

between nose to ears, F7 being the distance between center

bottom part of nose to cheekbone, and F8 being distance

between moth peaks and bottom of jaw. Features failed to

be measured is given value -99. We use string to represent

sequence instead of set because strings are order

preserving.

III. ANALYSIS AND IMPLEMENTATION

This part will demonstrate the application of face

recognition using approximate string matching approach.

Here we will use one Facial Features string representation

as a test pattern and a set of Facial Features string

representing an existing facial database. We will

demonstrate by using approximate string matching to find

the test face among the facial database. Note that due to

inaccuracy of measurement, there might be slight

difference with the real measurement. Assume that an

error of ± 1mm is tolerable. Test pattern and database

facial features string are generated from the image below:

Figure 3.1 Test image (www.cs.princeton.edu/)

From the test image above a face string FFtest, FF1,

FF2, FF3, FF4, FF5, and FF6, is generated as given below:

FFtest = 65 ∅ 80 ∅ 75 ∅ 66 ∅ 30 ∅ 120 ∅ 111 ∅ 50

FF1 = 64 ∅ 83 ∅ 53 ∅ 60 ∅ 33 ∅ 115 ∅ 111 ∅ 45

FF2 = 65 ∅ 80 ∅ 70 ∅ 65 ∅ 31 ∅ 120 ∅ 111 ∅ 45

FF3 = 70 ∅ 83 ∅ 72 ∅ 70 ∅ 40 ∅ 130 ∅ 116 ∅ 55

FF4 = 70 ∅ 89 ∅ 60 ∅ 66 ∅ 36 ∅ 125 ∅ 114 ∅ 40

FF5 = 85 ∅ 95 ∅ 65 ∅ 60 ∅ 45 ∅ 135 ∅ 125 ∅ 45

FF6 = 80 ∅ 90 ∅ 70 ∅ 68 ∅ 55 ∅ 135 ∅ 125 ∅ 50

By using approximate string matching we will

calculate each Levenshtein distance to transform FFtest

into each facial features sequence in the database. Assign

cost of 1 to insertion and deletion operation and assign

cost of 2 to substitution operation.

1. Calculate the distance between FFtest and FF1

The transformation of FFtest to FF1 is as follow:

1. δ(80 , 83) : cost = 2

2. δ(75 , 53) : cost = 2

3. δ(66 , 60) : cost = 2

4. δ(30 , 33) : cost = 2

5. δ(120 , 115) : cost = 2

6. δ(50 , 45) : cost = 2

Total cost = 12

2. Calculate the distance between FFtest and FF2

The transformation of FFtest to FF2 is as follow:

1. δ(75 , 70) : cost = 2

2. δ(50 , 45) : cost = 2

Total cost = 4

3. Calculate the distance between FFtest and FF3

The transformation of FFtest to FF3 is as follow:

1. δ(65 , 70) : cost = 2

2. δ(80 , 83) : cost = 2

3. δ(75 , 72) : cost = 2

4. δ(66 , 70) : cost = 2

5. δ(30 , 40) : cost = 2

6. δ(120 , 130) : cost = 2

7. δ(111 , 116) : cost = 2

8. δ(50 , 55) : cost = 2

Total cost = 16

4. Calculate the distance between FFtest and FF4

The transformation of FFtest to FF4 is as follow:

1. δ(65 , 70) : cost = 2

2. δ(80 , 89) : cost = 2

3. δ(75 , 60) : cost = 2

4. δ(30 , 36) : cost = 2

5. δ(120 , 125) : cost = 2

6. δ(111 , 114) : cost = 2

7. δ(50 , 40) : cost = 2

Total cost = 14

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

5. Calculate the distance between FFtest and FF5

The transformation of FFtest to FF5 is as follow:

1. δ(75 , 95) : cost = 2

2. δ(66 , 60) : cost = 2

3. δ(30 , 45) : cost = 2

4. δ(80 , 85) : cost = 2

5. δ(120 , 135) : cost = 2

6. δ(111 , 125) : cost = 2

7. δ(50 , 45) : cost = 2

Total cost = 14

6. Calculate the distance between FFtest and FF6

The transformation of FFtest to FF6 is as follow:

1. δ(65 , 90) : cost = 2

2. δ(75 , 70) : cost = 2

3. δ(66 , 68) : cost = 2

4. δ(30 , 55) : cost = 2

5. δ(120 , 135) : cost = 2

6. δ(111 , 125) : cost = 2

Total cost = 12

From the above calculation, the least FFtest has the

least distance with FF2 with total cost of 4 which is the

representation of facial features of the same person.

From the demonstration above we can see that although

we can find a person’s face based upon the least distance

it is unlikely to get a distance of 0 of the same person

between two images. This can be caused by slight

variation in facial expression that can cause difference in

facial features calculation. This is the reason to why we

cannot use exact string matching as an approach to match

facial features between faces as they cannot tolerate

error.

The above image shows that the test image is not

exactly the same with the corresponding image of the

same person in the database with the test image showing

the image when he smiles. This creates a slight variation

in measurement although not by much but does effect the

result of matching procedure. The measurement affected

are the distance between mouth peaks and the distance

between moth peaks and bottom jaw. This shows that it

is better to choose facial features independent to facial

expression. From the above example we can see that

accuracy is dependent to the facial features used to be

matched.

The approach of pattern matching using approximate

string matching has several advantages as well as

disadvantages. The ability to tolerate error is an advantage

because in the real world measurement can vary slightly

due to different viewing angle or bad image quality. By

using approximate string matching we can calculate the

ratio between the matched symbols with the mismatched

symbols thus having the ability to compute the accuracy

of matching procedure.

This approach to pattern matching is not without

disadvantages. To better demonstrate the disadvantages,

we will use the above example. In calculating distance

between FFtest and FF5 the measurement of 65 in FFtest

matches the measurement of 65 FF5 but they are not

measurement of the same facial features, where 65 denote

measurement of distance between eyes in FFtest, it denote

a measurement of distance of mouth peaks in FF5. This

shows that although representation in sequence does

preserve order the matching algorithm itself is not order

preserving. Although this case rarely happened in real life

due to high variability in face dimension between each

person, it can affect end result and decrease accuracy

although not by much.

IV. CONCLUSION

There are many approach to identify faces in face

recognition technology. Faces can be represented in many

types of representation varying from matrix, set of

features, sequence of features, eigenface and many more,

each having advantages as well as disadvantages. We can

conclude that approximate string matching is a better

approach for pattern matching than exact string matching

as they can tolerate error. Although error can be

minimized, they can’t be eliminated thus making

approximate string matching a better approach. Accuracy

using this approach is dependent on the selected facial

features and the amount of facial features used as data.

More facial features used lead to a bigger amount of data

therefore increasing accuracy.

V. ACKNOWLEDGMENT

First of all, I would like to thank God for His guidance

during the writing of this paper. I wish to express my

sincere thanks to Dr. Ir. Rinaldi Munir and Mrs. Masayu

Leylia Khodra for teaching us. I would also like to thank

my parents for their support and courage.

REFERENCES

[1] Rinaldi Munir, Diktat Kuliah Strategi Algoritma, Bandung:

Program Studi Teknik Informatika ITB, 2006

[2] www.cs.uiuc.edu/~jeffe/teaching/algorithms/notes/05-dynprog.pdf

Retrieved on 14 May 2014

[3] http://www.webopedia.com/TERM/B/biometrics.html

Retrieved on 15 May 2014

[4] www.biometrics.gov/documents/biooverview.pdf

Retrieved on 15 May 2014

[5] http://stat.ethz.ch/R-manual/R-devel/library/utils/html/adist.html

Retrieved on 13 May 2014

[6] Sibt ul Hussain, Thibault Napoleon, and Frederic Jurie. Face

Recognition using Local Quantized Patterns, University of Caen

Basse-Normandie, France

[7] http://jeremykun.com/2011/07/27/eigenfaces/

Retrieved on 14 May 2014

[8] http://www.youtube.com/watch?v=aEIhvv5p-V8

Retrieved on 15 May 2014

[9] Mei-Chen Yeh and Kwang-Ting Cheng. A String Matching

Approach for Visual Retrieval and Classification, University of

California, USA

http://www.webopedia.com/TERM/B/biometrics.html
http://www.biometrics.gov/documents/biooverview.pdf
http://stat.ethz.ch/R-manual/R-devel/library/utils/html/adist.html
http://jeremykun.com/2011/07/27/eigenfaces/

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

[10] Weiping Chen and Yongsheng Gao. Face Recognition using

Ensemble String Matching, IEEE, 2012

[11] S. W. Chen, S. T. Tung, C. Y. Fang, Shen Cheng, and Anil K.

Jain. Attributed String Matching for Shape Recognition, 1997

[12] John D. Woodward et.al. Biometrics: A Look at Facial

Recognition, RAND, 2003

[13] BaoChang Shang et.al. Local Derivative Pattern Versus Local

Binary Pattern: Face Recognition With High-Order Local Pattern

Descriptor, IEEE Transactions on Image Processing, 2010

[14] Jignesh Hirapara et.al. Face Recognition (Pattern Matching &

Biometrics), International Journal of Computer Applications &

Information Technology, 2012

[15] Hazim Kemal E. and Rainer S. Why is Facial Occlusion a

Challenging Problem?, Universitat Karlsruhe, German

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 18 Mei 2014

Mario Filino

13512055

