
Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Knuth-Morris-Pratt (KMP) and Boyer-Moore Algorithm

Implementation in Digital Image Processing

Template Matching

Annisaur Rosi Lutfiana 135120881

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1annisaurrosi@s.itb.ac.id

Abstract— To find out the source of the image which

is initially unknown for various purposes becomes a lot

easier for today, one of the example is by using the

Google feature "search by image". The technique used

by the application and other applications which

requires searching or matching techniques is

representing a derivation of string matching

algorithms, as known as template matching. The

explanation in this paper includes the brief description

of template matching and its applications in digital

image processing, also how it is implemented in two

widely known string matching algorithms, Knuth-

Morris-Pratt (KMP) and Boyer-Moore string

matching algorithm.

Index Terms—Template matching, string matching,

digital image processing, content-based image retrieval

I. INTRODUCTION

In this information era, the usages of digital

images are almost never separated to everyday life.

There are times when the usage of digital images

containing specific information that unable to be

extracted into information in the more general

forms, such as numbers or certain strings. This

problem most likely to happen because the digital

image is a form of data that is extremely rich in its

properties, such as size, color, texture, shape, and

other components. The acts of identifying,

searching, and matching of digital images which are

parts of the digital image processing will be much

more difficult than the processing of data or strings.

One of the problems that most probably occurred

in the usage of digital images is, that if the source of

the digital image is unknown. If someone wants to

find the source of a digital image, retrieve its

informations, or get the access for other digital

images which are similar to the current image is

quite a difficult problem to be solved and is not as

easy as doing the same thing to a text. Fortunately,

we can find a new feature in Google to solve these

problems, which known as the "search by image". It

is relatively very easy for users to identify images

simply by providing a digital image to be processed

without the need to describe the digital images as

words and search for it in regular Google search.

Picture 1.1 Google search by image

Another type of digital image processing which

can be considered much more important than

everyday common identification of digital image is

for example, facial recognition or recognition of

biological features such as iris or fingerprint. This

process is typically used to access particular

restrictions, which can be functioned as a key for a

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

room or anything. It has been proven that the use of

such recognition is much more secure than a

password or manual physical key, to remember that

passwords and keys can be lost or stolen. The

program will store the data of user’s features who

are granted for access, so the program can match the

image retrieved by its sensor with the pattern data

provided.

There are a lot of other programs or features

which implementing the matching process of the

digital images. Some of them includes the access of

intellectual property in the form of digital images,

automatic discovery and face tags that we can find

in Google Picasa and Facebook applications, the

atomatic nudity censorship in digital images, video,

and other media, and many other applications. Of

course, digital image processing is needed in those

fields that unable to be separated from the usage of

digital images, such as photography, art, medical,

even in law enforcement.

Digital image processing with the functions

mentioned above is implementing the technique

called Content-Based Image Retrieval (CBIR). This

technique uses template matching algorithm, which

is a derivation of the string matching algorithm.

Known string matching algorithms include

algorithms Knuth-Morris-Pratt (KMP) and the

Boyer-Moore.

II. RELATED THEORIES

2.1 String Matching

String matching is the problem of finding

occurrence(s) of a pattern string within

another string or body of text. There are many

different algorithms for efficient searching.

Also known as exact string matching, string

searching, or text searching.[1]

Here is the known string matching algorithms:

Single pattern algorithms

1. Naïve string matching algorithm

2. Rabin–Karp string matching

algorithm

3. Finite-state automaton based search

4. Knuth–Morris–Pratt algorithm

5. Boyer–Moore string matching

algorithm

6. Bitap algorithm (shift-or, shift-

and, Baeza–Yates–Gonnet)

Algorithms using a finite set of patterns

1. Aho–Corasick string matching

algorithm

2. Commentz-Walter algorithm

3. Rabin–Karp string matching

algorithm[2]

2.2 Template Matching

Template matching is a technique in digital

image processing for finding small parts of an

image which match a template image. It can be

used in manufacturing as a part of quality

control, a way to navigate a mobile robot, or as

a way to detect edges in images.[3] A basic

method of template matching uses

a convolution mask (template), tailored to a

specific feature of the search image, which we

want to detect. This technique can be easily

performed on grey images or edge images. The

convolution output will be highest at places

where the image structure matches the mask

structure, where large image values get

multiplied by large mask values.

This method is normally implemented by first

picking out a part of the search image to use as

a template: We will call the search image S(x,

y), where (x, y) represent the coordinates of

each pixel in the search image. We will call the

template T(x t, y t), where (xt, yt) represent the

coordinates of each pixel in the template. We

then simply move the center (or the origin) of

the template T(x t, y t) over each (x, y) point in

the search image and calculate the sum of

products between the coefficients in S(x,

y) and T(xt, yt) over the whole area spanned by

the template. As all possible positions of the

template with respect to the search image are

considered, the position with the highest score

is the best position. This method is sometimes

referred to as 'Linear Spatial Filtering' and the

template is called a filter mask.

For example, one way to handle translation

problems on images, using template matching

is to compare the intensities of the pixels, using

the SAD (Sum of absolute differences)

measure.

A pixel in the search image with

coordinates (xs, ys) has intensity Is(xs, ys) and a

pixel in the template with coordinates (xt,

yt) has intensity It(xt, yt). Thus the absolute

difference in the pixel intensities is defined

as Diff(xs, ys, x t, y t) = | Is(xs, ys) – It(x t, y t) |.

The mathematical representation of the idea

about looping through the pixels in the search

http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Digital_image_processing
http://en.wikipedia.org/wiki/Convolution
http://en.wikipedia.org/wiki/Edge_detection
http://en.wikipedia.org/wiki/Spatial_filter
http://en.wikipedia.org/wiki/Pixel
http://en.wikipedia.org/wiki/Sum_of_absolute_differences
http://en.wikipedia.org/wiki/Absolute_difference
http://en.wikipedia.org/wiki/Absolute_difference

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

image as we translate the origin of the template

at every pixel and take the SAD measure is the

following:

Srows and Scols denote the rows and the columns

of the search image and Trows and Tcols denote

the rows and the columns of the template

image, respectively. In this method the lowest

SAD score gives the estimate for the best

position of template within the search image.

The method is simple to implement and

understand, but it is one of the slowest

methods.[4]

In this simple implementation, it is assumed

that the above described method is applied on

grey images: This is why Grey is used as pixel

intensity. The final position in this

implementation gives the top left location for

where the template image best matches the

search image.

minSAD = VALUE_MAX;

// loop through the search image

for (int x = 0; x <= S_rows - T_rows;

x++) {

 for (int y = 0; y <= S_cols -

T_cols; y++) {

 SAD = 0.0;

 // loop through the template

image

 for (int j = 0; j < T_cols; j++

)

 for (int i = 0; i < T_rows;

i++) {

 pixel p_SearchIMG =

S[x+i][y+j];

 pixel p_TemplateIMG =

T[i][j];

 SAD += abs(

p_SearchIMG.Grey - p_TemplateIMG.Grey);

 }

 // save the best found position

 if (minSAD > SAD) {

 minSAD = SAD;

 // give me min SAD

 position.bestRow = x;

 position.bestCol = y;

 position.bestSAD = SAD;

 }

 }

}

2.3 Knuth-Morris-Pratt (KMP) Algorithm

Knuth-Morris-Pratt string matching

algorithm (or KMP algorithm) searches for

occurrences of a "word" W within a main "text

string" S by employing the observation that

when a mismatch occurs, the word itself

embodies sufficient information to determine

where the next match could begin, thus

bypassing re-examination of previously

matched characters.[5]

input:

an array of characters, S(the text to be

searched)

an array of characters, W(the word sought)

output:

an integer(the zero - based position in S

at which W is found)

define variables :

an integer, m ← 0 (the beginning of the

current match in S)

an integer, i ← 0 (the position of the

current character in W)

an array of integers, T(the table,

computed elsewhere)

while m + i < length(S) do

if W[i] = S[m + i] then

if i = length(W) - 1 then

return m

let i ← i + 1

else

if T[i] > -1 then

let i ← T[i], m ← m + i - T[i]

else

let i ← 0, m ← m + 1

(if we reach here, we have searched all of

S unsuccessfully)

return the length of S

2.4 Boyer-Moore Algorithm

Boyer–Moore string search algorithm is an

efficient string searching algorithm that is the

standard benchmark for practical string search

literature.[6] The algorithm preprocesses the

string searched for (the pattern) but not the

string being searched in (the text). It is thus

well-suited for applications in which the

pattern is much shorter than the text or does

persist across multiple searches. The Boyer-

Moore algorithm uses information gathered

during the preprocess step to skip sections of

the text, resulting in a lower constant factor

than many other string algorithms. In general,

the algorithm runs faster as the pattern length

increases. The key feature of the algorithm is

to match on the tail of the pattern rather than

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

the head, and to skip along the text in jumps of

multiple characters rather than searching every

single character in the text.

input:

String T(text with n characters and

P(pattern) with m characters

output:

Starting index offirst substring of T

matching p, or an indication that P is not

a substring of T

i <--m - 1

j <--m - 1

repeat

if P[j] = T[i] then

 if j = 0 then

 return i

 else { check next character }

 i <--i - 1

 j <--j - 1

else { P[j] <> T[i] move the pattern }

i <--i + m - j - 1

i <--i + max(j - last(T[i]), match(j))

j <--m - 1

until i > n - 1

return "There is no substring of T

matching P."

2.5 Content-Based Image Retrieval

Content-based image retrieval (CBIR), also

known as query by image content (QBIC)

and content- based visual information retrieval

(CBVIR) is the application of computer vision

techniques to the image retrieval problem, that

is, the problem of searching for digital images

in large databases. Content - based image

retrieval is opposed to traditional concept-

based approaches.[7]

Initial CBIR systems were developed to search

databases based on image color, texture, and

shape properties. After these systems were

developed, the need for user-friendly interfaces

became apparent. Therefore, efforts in the

CBIR field started to include human-centered

design that tried to meet the needs of the user

performing the search. This typically means

inclusion of: query methods that may allow

descriptive semantics, queries that may involve

user feedback, systems that may include

machine learning, and systems that may

understand user satisfaction levels.

III. IMPLEMENTATIONS AND EXPERIMENTS

Hereby the C implementation of Knuth-

Morris-Pratt string matching algorithm for

template matching, using the same properties as

the example of template matching in section 2.2.

minSAD = VALUE_MAX;

// loop through the search image

for (int x = 0; x <= S_rows - T_rows; x++) {

 for (int y = 0; y <= S_cols -

T_cols; y++) {

 SAD = 0.0;

 // construct the lookup

table

 T =

(int*)malloc(sizeof(T_rows)*

sizeof(T_cols));

 T[0] = -1;

 for (int x = 0; x <= S_rows

- T_rows; x++) {

 T[x + 1] = T[x] +

1;

 while (T[x + 1] > 0

&& p_TemplateIMG[x] != p_TemplateIMG[T[x +

1] - 1])

 T[x + 1] =

T[T[x + 1] - 1] + 1;

 }

 // template matching

 for (x = y = 0; S[x] !=

'\0';) {

 if (y < 0 || S[x]

== T[y]) {

 ++x, ++y;

 if (T[y] ==

'\0') {

 result = text + x - y;

 break;

 }

 }

 else x = T[y];

 }

 for (int j = 0; j < T_cols;

j++)

 for (int i = 0; i < T_rows;

i++) {

 pixel p_SearchIMG =

S[x + i][y + j];

 pixel p_TemplateIMG

= T[i][j];

 SAD +=

abs(p_SearchIMG.Grey - p_TemplateIMG.Grey);

 }

 // save the best found

position

 if (minSAD > SAD) {

 minSAD = SAD;

 // give me min SAD

 position.bestRow =

x;

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

 position.bestCol =

y;

 position.bestSAD =

SAD;

 }

 }

}

Below written the Boyer-Moore implementation

of the same functions and properties as the template

matching example.

minSAD = VALUE_MAX;

// loop through the template image

for (int x = 0; x <= S_rows - T_rows; x++) {

 for (int y = 0; y <= S_cols - T_cols;

y++) {

 SAD = 0.0;

 // initialize skip lookup

table

 for (x = 0; x < 256; i++)

 skipTable[i] =

p_TemplateIMG;

 p_TemplateIMG = P;

 // decrease PLength here to

make it an index

 i = --PLength;

 do

 {

 skipTable[*p_TemplateIMG++] = i;

 } while (i--);

 lastChar = *--p_TemplateIMG;

 // start p_TemplateIMG,

position pointer at possible end of image

 p_TemplateIMG = T + PLength;

 TLength -= PLength + (PLength

- 1);

 while ((int)TLength > 0)

 {

 unsigned int skip;

 skip =

skipTable[*p_TemplateIMG];

 p_TemplateIMG +=

skip;

 TLength -= skip;

 skip =

skipTable[*p_TemplateIMG];

 p_TemplateIMG +=

skip;

 TLength -= skip;

 skip =

skipTable[*p_TemplateIMG];

 if (*p_TemplateIMG !=

lastChar) /*if (skip > 0)*/

 {

 // image does

not match, realign image and try again

 p_TemplateIMG

+= skip;

 TLength -=

skip;

 continue;

 }

 // we had a match, we

could be at the end of the image

 i = PLength;

 do

 {

 // Have we

found the entire Ping?

 if (i-- == 0)

 return p_TemplateIMG;

 } while (*--

p_TemplateIMG == Ping[i]);

 // skip past the part

of the Ping that we scanned already

 p_TemplateIMG +=

(PLength - i + 1);

 TLength--;

 }

 // we reached the end of the

T, and didn't find the Ping

 return NULL;

 }

 // save the best found position

 if (minSAD > SAD) {

 minSAD = SAD;

 // give me min SAD

 position.bePow = x;

 position.bestCol = y;

 position.bestSAD = SAD;

 }

}

}

Both of the algorithms (KMP and Boyer-Moore) are

considered to be not very effective and get through

many difficulties to solve problems through the

search and matching two-dimensional, as required

for template matching as a method of use of CBIR.

Which is considered as the most effective algorithm

for two-dimensional search algorithm which are

Polcar, the following explanations and illustration

(for string matching).

a. For each prefix of the text A, we compute

the set of suffixes of A that are also a prefix

of the patterm: suff(A) ∩ pref(P)

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

Picture 1.2 Illustration of suffix and prefix in Polcar

algorithm

b. In derivations of the corresponding 1D

pattern matching algorithms, sets of

prefixes of the pattern are represented by

their element of maximum length.

c. In 2D there is not always one unique

maximum but these sets of matrices can be

represented by their maximal elements.

For the comparation between KMP and Boyer-

Moore itself, considered that both of the algorithms

has its own specialties depending on the problem

and situations. The Knuth-Morris-Pratt (KMP)

algorithm is a good choice if we need to search for

the same pattern repeatedly in many different

queries, but only works best in short pattern

applications. Therefore, for this template matching

problem which implementing the usage of digital

images processing as the objects that relatively large

and complex in terms of size and properties, Boyer-

Moore is a better algorithm for this problem in its

application.

Here is the complexity result of both algorithms,

in general pattern matching application.

Algorithm Pre-processing

time

Matching

time

Knuth-

Morris-Pratt

algorithm

Θ(m) Θ(n)

Boyer-Moore

algorithm

Θ(m + |Σ|) Ω(n/m),

O(nm)

IV. CONCLUSION

Template matching is a method known as a

derivation from a string or pattern matching method,

which is implemented in the Content-Based Image

Retrieval (CBIR), as part of the application of digital

image processing, one of those vital and important

features in the usage of software. Although it is

considered that two algorithms we’re working on

(Knuth-Morris-Pratt and Boyer-Moore) are less

effective in the solving attempt of two-dimensional

pattern matching problem, both of these algorithms

are considered to represent the issue as its own form

of settlement.

KMP and Boyer-Moore algorithm has their own

specialties when it comes to solve various kind of

template matching problems, but Boyer-Moore is

considered to be the most effective template

matching algorithm for this kind of problem because

of its adeptness in handling large size of template, or

in this term, digital images.

VII. ACKNOWLEDGMENT

Annisa‘ur Rosi Lutfiana, as the author of this

paper, want to express her grateful thanks to God for

His blessing during the making of this paper, her

deepest gratitude to Dr. Ir. Rinaldi Munir, M.T. and

Masayu Leylia Khodra, ST., MT. as the lecturers of

IF2211 – Strategi Algoritma.

Special thanks to my family back home and all

my friends in HMIF for all the supports and

guidances. Also thanks for all of the authors which I

got a lot of this study references from, may God

bless your knowledge with endless abundances.

REFERENCES

[1] Paul E. Black, in Dictionary of Algorithms and Data

Structures, Vreda Pieterse and Paul E. Black, ed. 5 May

2005.

[2] Melichar, Borivoj, Jan Holub, and J. Polcar. Text Searching

Algorithms. Volume I: Forward String Matching. Vol. 1. 2

vols., 2005.

[3] R. Brunelli, Template Matching Techniques in Computer

Vision: Theory and Practice, Wiley, ISBN 978-0-470-

51706-2, 2009

[4] B. Sirmacek, C. Unsalan. Urban Area and Building

Detection Using SIFT Keypoints and Graph Theory, IEEE

Transactions on Geoscience and Remote Sensing, Vol.47

(4), pp. 1156-1167, April 2009.

[5] Knuth, Donald; Morris, James H., jr; Pratt,

Vaughan (1977). SIAM Journal on Computing 6 (2): 323–

350.

[6] Hume and Sunday (1991) [Fast String

Searching] Software—Practice And Experience, vol.

21(11), 1221–1248 (November 1991)

http://en.wikipedia.org/wiki/Special:BookSources/9780470517062
http://en.wikipedia.org/wiki/Special:BookSources/9780470517062

Makalah IF2211 Strategi Algoritma – Sem. II Tahun 2013/2014

[7] Shapiro, Linda; George Stockman (2001). Computer Vision.

Upper Saddle River, NJ: Prentice Hall.

STATEMENT

I hereby stated that this paper is copyrighted to

myself, neither a copy from other‘s paper nor a

translation of similar paper.

Bandung, 18th of May 2014

Annisaur Rosi Lutfiana – 13512088

