
Game Battleship Board Checking
Hartono Sulaiman Wijaya 13509046

Informatics Engineering StudyProgram
School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia
hartono.sulaiman@gmail.com

Game Battleship is a kind of guessing game played by
two people. This game uses chequered board that consists
of 10x10 squares. This paper will discuss about algorithm
used to validate the board.

Index Terms—Battleship, brute force,exhaustive search,
validation

I. INTRODUCTION

Game Battleship is a kind of guessing game using
minimum two boards (each board 10 x 10 squares) and is
played by two player. Each square will be given number
to represent its coordinate vertically and horizontally.
Each player get one board that represents the sea where
the ships will be placed. Each player only get 10 ships
with different size and player should arrages the ship
secretly. The ships only can be arranged at the board
vertically or horizontally. The ships cannot overlap, only
one ship that can occupy some squares in board, once
squares were occupied by a ship, other ships cannot be
placed there. The ship also should not touch other ships
which means a ship cannot be placed beside other ships
exactly in any way.

In this game (especially for game which this paper
discussed), there are four kinds of ships.

• One ship of size 4 squares (4 x 1 or 1 x 4
squares)

• Two ships of size 3 squares (3 x 1 or 1 x 3
squares)

• Three ships of size 2 squares (2 x 1 or 1 x 2
squares)

• Four ships of size 1 square (1 x 1 square).
After both of players put all the ships, they can start

attacking the enemy’s ships. For each turn, each player
can choose coordinate (1 square) to attack. After player
attacks, the enemy should tells whether a ship has been
attacked or not. The ship will sink if the ship is attacked
on its full body (which means if four sized-ship will sink
when all four squares at ship’s position are attacked).
When all of enemy’s ships have been sunk, the game will
end and the player wins.

Fig. 1 Pencil and paper game version
While playing this game traditionally, we only use

pencil and paper. You can see the Fig.1. There is a board
that consists of squares. You can refer to the upper left
square by just saying A1 square (coordinate system). You
also see some rectangles that represent the ships. For
marking the attacked square, we can use cross mark at the
square.

 The problem when playing this kind of game, you have
to put the ships correctly, but no one can exactly validate
the board because the arrangement of the ships is secret.
Nowadays, we can use computer to play the game and the
program always do validation about the board and prevent
cheating.

For this purpose, this paper will discuss about how do
program validate the board. For checking the board, we
can use brute force approach. One of brute force
technique is exhaustive search. To know about validation
of the arrangement, we should check whether all kind of
ships placed properly, there are no overlapping ships,
there are no ships touched each other. We must check all
squares in matrix.

II. PROBLEM SPACE

For checking the board, we have to simulate the board.
Given for each board checked, it is represented by a
matrix of character. The 10x10 matrix will be filled with

two kind characters. For blank square, it will be
represented by ‘0’ and for square that occupied by ship
will be ‘*’. The first row of matrix represent the first row
of the board, and so on. The example of this matrix can be
seen in Fig.2.

Fig. 2 Matrix represents the board and ships

Example in Fig.2 is represent a valid arrangement for
ships. There are a four-squares ship , two three-squares
ships, three two-squares ships, and four one-square ships.
The ships are placed correctly without overlapping each
other.

Fig. 3 Invalid arrangement of ships – touched
diagonally

Example in Fig. 3 is represent the invalid arrangement
of ships. Ship in row 8 and row 9 are “touched”
diagonally, so it broke the rule and made it as invalid
arrangement. For another rule, we can see in Fig. 4. The
example in Fig. 4 broke the rules which are the number of
one-square ships are 8, it should be 4 ships, and in row 3
and 4, there are ships that overlapping.

Fig. 4 Invalid arrangement of ships – ship
number wrong
III. SOLUTION

As explained before, to check whether the arrangement
is valid or not, we use brute force approach. With brute
force approach, we can use exhaustive search technique to
check all element in the matrix.

For the first step, we should identify the ships are
placed without any ship overlapped each other diagonally.
This can be done by checking each square one by one. For
each square checked, let says the square at row i-th and
column j-th. We will check from square at row 1st till 9th
and column 1st till 9th. We check whether square at (i-th
row , j-th column) has been occupied with a ship (we
check for ‘*’ character at the square). If true, then we
check square at (i+1 –th row , j+1 –th column) to see
whether it has also been occupied by a ship. We also
check square at (i-th row, j+1 –th column) and (i+1 –th
row, j-th column) to see whether they have been occupied
by a ship. If one of squares in matrix meet the conditions,
it seems that the matrix will bring an invalid arrangement
of ships. You can see the position of the diagonal we
checked before at Fig.5 and 6.

Fig. 5 diagonal -1

Fig. 6 diagonal -2
Then we must check the number of ships. First we

check for ship whose size is bigger than 4. If we found it
vertically or horizontally, the arrangement is invalid. We
can choose to check if there are ships which size is 5. We
use 5 squares – ship as lower bound to check.

After we check for false-size ships, we can continue to
check other kind ships. We count the number of ship and
then compare the result with the rules. We can see the
relationship between ship’s size and ships count in table 1.
we can compare the size + count with 5. If they equals,
then the ship count of that size is correct and we can
continue with counting the other size ship until all kind of
ship are counted properly.

Ship's size Number

4 1

3 2

2 3

1 4

Table 1 Relationship between size and count
When counting then number of ships with length k, we

create counter to save the number of ships. Then we
iterate each square which is the neighbour of square
checked horizontally. Let see Fig. 7, the red one is the
square we checked. First checking is to see the content of
square beside the red square till column i+k (the green
rectangle). if ‘*’ count matchs the size of ship (k) then the
counter increase.

Fig. 7 Checking square vertically and
horizontally

The way we check the vertical position of the ship is

same as horizontal checking. See the Fig. 7. Examine the
yellow rectangle. it will count the ‘*’ character and
validate the count with ship’s size. At the end of checking,
program will try to match the counter with number in table
1.

The method that explained before was the brute force
way. We also will try finding another way that more
effective than brute force way.

The brute force way check all square from row 1 till 10
and from column 1 to 10, so it will check 10 x 10 x 5
squares to get the result. The size of this problem is small
enough to solve with brute force. But is there any method?

We can add variety to the brute force way. Before
check the square, we check whether it square has been
checked before or not. We will list all the squares that
have been checked. When we find a ship, we list all the
squares occupied by that ship. with this method, we can
minimize the number of squares that will be checked. We
can call this skip method.

Fig. 8 Pseudocode for this method

IV. PERFORMANCE ANALYSIS

At table 1, we can see the result of test for these
methods. These methods are applied on 9 variations of
ship arrangements. Then runtime of the program is
calculated in millisecond. For fifteen iteration of the
program, it gives the result as written in table below.

NO
BRUTE
FORCE

METHOD

SKIP
METHOD

1 48 44

2 38 38

3 45 41

4 40 42

5 39 40

6 38 38

7 39 41

8 39 39

9 39 40

10 42 41

11 41 40

12 40 43

13 41 40

14 38 40

15 38 39

AVERAGE 40,3 40,4

Table 2 Runtime result for 9 boards in
milliseconds

With this result, we can see that with small domain of
problem, the brute force approach gives a good solution.
The brute force average runtime is almost same as the skip
method average runtime.

Given n as number of ship types, m as board size. This
brute force algorithm has complexity O(n x m2).

V. CONCLUSION

For this experiment, we can see that brute force method
is also effective for problem with small domain.

REFERENCES

[1] Wikipedia. “Battleship (game).” Internet: http://en.wikipedia.org/
wiki/Battleship_(game), Jun, 2011 [Dec 08,2011].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya
tulis ini adalah tulisan saya sendiri, bukan saduran, atau
terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2011

ttd

Hartono Sulaiman Wijaya 13509046

http://en.wikipedia.org/wiki/Battleship_(game)
http://en.wikipedia.org/wiki/Battleship_(game)

	I. Introduction
	II. Problem Space
	III. Solution
	IV. Performance Analysis
	V. Conclusion
	References
	Pernyataan

