
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Greedy Algorithm in Books Arrangement Problem

Okiriza Wibisono / 13509018
Informatics Engineering

School of Electrical Engineering and Informatics
Bandung Institute of Technology, Jalan Ganesha 10 Bandung 40132, Indonesia

okiriza.wibisono@students.itb.ac.id

Abstract—Despite its simplicity, greedy algorithm is well
known for its efficiency in many instances of optimization
problems. One such instance is “The Integer Knapsack
Problem”, in which there is a knapsack, with certain
maximum capacity, to be filled with things in such a way
that maximizes the sum of value of all the things put in the
knapsack. This paper discusses a problem similar to the
integer knapsack problem: how to fill bookshelves in a
bookstore to get the most profit.

Index Terms—book, greedy algorithm, optimization,

solution.

I. INTRODUCTION
Imagine you have just opened a bookstore not far from

your campus. For starters, you purchased two hundred
books and five bookshelves. You may start to wonder:
how should you arrange these books, probably not all of
them, into the bookshelves so that people visiting would
find your bookstore convenient and you would
(hopefully) get the most profit?

Undoubtedly, a bad arrangement of books will cause
confusion to customers and denial of potential income. A
student probably won’t like having to waste his time
wandering all the way around your bookstore only to find
a textbook. Moreover, a bad arrangement may make it
difficult to monitor book stocks and to maintain a
consistent database. A technique (or algorithm) needs to
be devised to overcome these problems associated with
bad arrangement of books.

Fig. 1. A good arrangement of books attracts more

customers

In almost every bookstore, the books are arranged
according to a certain parameter. For example, the books
may be arranged alphabetically on their titles. While this
may be the simplest arrangement, arranging books by
their titles hinders a class of customers: impulsive
customers. If this kind of arrangement is applied,
customers who come to the bookstore without prior
planning on what to buy will almost likely not find the
books they like, as the books are sorted only on their
titles. Also imagine what will happen if a newly stocked
book must be put into an already full bookshelf. Should
the new book be put elsewhere, or all the books with titles
lexicographically greater than it rearranged to make some
place? Surely this will cause other problems and won’t
make the customers or the bookstore owner happy.

An obvious, yet effective, arrangement is sorting books
according to their categories. In this way a customer who
is, say, a novel-addict can easily scan through numerous
novels in a novels section and grab some which he likes.
In fact, it is very common to find bookstores labeling their
bookshelves with category names, not alphabet.

Another possible arrangement is sorting books on their
categories plus their sets. For example, books of a certain
trilogy should be put adjacent to each other. While
certainly better than arrangement solely by category, it is
more complex and therefore not discussed in this paper.

This paper walks through the application of greedy
algorithm to solve books arrangement problem, precisely
one which bases the arrangement on category. We will
see in later sections how to get the best books
arrangement given some bookshelves with a certain
capacity, some book categories, and (of course) some
books.

II. THEORETICAL BASIS
Greedy algorithm is the most popular algorithm for

optimization problems. Optimization problem is defined
as how to obtain the optimal solution given an instance of
the problem. Optimization problem is further classified
into 2 types: maximization and minimization problem.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Greedy algorithm takes as its principle the statement
“take what you can get now”. This means that greedy
algorithm will immediately take (or choose) the best
possible option at the moment. By taking the best option
at each step (local optimum), it hopes to reach the best
solution there is (global optimum).

In shorter words, greedy is an algorithm which:
1. Is stepwise,
2. Takes the best option available at a moment

without considering the consequences, and
3. Hopes that taking all the local optimums leads to

the global optimum.
Greedy algorithm is represented by 5 elements:
1. Candidate set, C,
2. Solution set, S,
3. Selection function,
4. Feasibility function, and
5. Objective function.
Candidate set (C) consists of all the elements which

will build the solution. An element of candidate set may
itself be a set, as we will see in this paper later. At each
step, an element is taken from candidate set and inserted
into solution set (S) (hence candidate set and solution set
must be sets of the same type of elements). Solution set
consists of the selected elements which, as a whole,
represent the solution of the problem instance. Since its
elements are taken from the candidate set, solution set is a
subset of candidate set.

Selection function selects, at each step, an element
from candidate set which will be inserted into the solution
set. Based on the objective of the greedy algorithm,
selection function assigns a value to each candidate in
candidate set and selects one candidate which has the
maximum, or minimum, value and removes it from
candidate set. A greedy algorithm for one problem may
have more than one selection functions.

Before the candidate selected by selection function is
put into solution set, feasibility function tests whether it
is feasible to put that candidate into solution set. By
feasible it means that, together with all the candidates in
solution set, the new candidate does not violate an
existing constraint on the solution set. A “feasible”
selected candidate will be inserted into solution set. If the
selected candidate fails to pass the feasibility test, another
will be taken from the candidate set. This process is
repeated until there are no more elements left in candidate
set, or until a certain goal has been achieved by the
current solution set. The last function, objective function,
is a function which maximizes (or minimizes) the sum of
value of the solution.

Here is the general scheme of greedy algorithm:
1. Initialize solution set as an empty set.
2. While solution set doesn’t represent the solution

wanted and candidate set is not empty, perform the
steps below.

3. Remove a candidate from candidate set (by calling
selection function).

4. Test the selected candidate with feasibility

function. If it passes, add it to solution set.
5. Repeat step 2.
Finally, it is important to note that for some problems

greedy algorithm does not yield the best solution, since
two things apply:

1. Greedy algorithm bases its decisions only on the
current available options, not considering the
consequences or alternative solutions.

2. There may be more than one selection functions;
therefore we must choose the correct one if the
algorithm is to give the best solution possible.

While this makes greedy algorithm not completely
reliable, it surely keeps greedy algorithm simple and
efficient to implement, thus its popularity in optimization
problems.

III. APPLICATION
As our problem seeks to maximize the sum of value of

all the books in the arrangement, it is a good candidate for
applying greedy algorithm. Before we define the elements
of the greedy algorithm as explained in the previous
section, we should define the problem statement.

“Suppose there are 𝐴1,𝐴2,⋯ ,𝐴𝑝 bookshelves, each

may contain up to 𝐿 books. Suppose there are
𝑛1,𝑛2,⋯ ,𝑛𝑚 books of category, in exact order,
𝐾1,𝐾2,⋯ ,𝐾𝑚. Each bookshelf may contain books of one
and only one category. Let 𝑏𝑖𝑗 denote the jth book of
category i, and 𝑣𝑖𝑗 denote its value (1 ≤ 𝑖 ≤ 𝑚 and
1 ≤ 𝑗 ≤ 𝑛𝑖). How do we put the books in the bookshelves
so that we get the biggest sum of value of all the books in
the bookshelves?”

From the problem statement above, we can define the

elements of the greedy algorithm:
1. Candidate Set

The candidate set is all sets of books, with each
set containing books of the same category.
Mathematically written, the candidate set is

𝐶 = � 𝐴 � 𝐴 = � 𝑏𝑖𝑗�
 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 ,
∀ 𝑏𝑖1𝑗1,𝑏𝑖2𝑗2, 𝑖1 = 𝑖2

��

Though looks a bit complicated, this equation

simply states that C is all the subsets of all the
books that haven’t been placed into a shelf, with
each subset consisting of books of the same
category. For instance, 𝐴1 = {𝑏13,𝑏17,𝑏18} is an
element of C but 𝐴1 = {𝑏13,𝑏25,𝑏18} is not, since
𝐴2 consists of books of two categories, category 1
and category 2.

2. Solution Set
The solution set is probably the hardest element

to express. It contains the set of bookshelves which
gives the maximum value for the problem
instance, such that each bookshelf passes the

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

feasibility function (described below) and contains
books of one and only one category, and
(naturally) a book cannot exist in more than one
bookshelves.

𝑆 =

⎩
⎨

⎧
 𝐴 ��

 𝐴 = �𝑏𝑖𝑗�
1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛𝑖 ,
∀𝑏𝑖1𝑗1,𝑏𝑖2𝑗2, 𝑖1 = 𝑖2

� ,

∀𝑏𝑖1𝑗1 ∈ 𝐴1,𝑏𝑖2𝑗2 ∈ 𝐴2,𝑏𝑖1𝑗1 ≠ 𝑏𝑖2𝑗2,
𝐹(𝐴) ⎭

⎬

⎫

where 𝐹(𝐴) denotes that 𝐴 passes the feasibility
function 𝐹.

3. Selection Function

Since we will focus on how to merely arrange
the books based on their category, we do not seek
to compare a number of selection functions. We
can then give value to each book as we see fit. For
example, the value of a book might be its price, its
number of inquiries in the last month, other
properties of the book, or some function of them.
Thus, the selection function will only select the
bookshelf with the maximum sum of that value.

4. Feasibility Function
From the problem statement, we can easily infer

the feasibility function: a candidate bookshelf may
contain up to 𝐿 books, or “the maximum number
of elements in a candidate is 𝐿”.

5. Objective Function
The objective function is to maximize the sum of

value of all the bookshelves. The value of a
bookshelf itself is the sum of value of all the books
in it. In other words, the objective function is to
maximize

𝑂 = �𝑣(𝐴𝑖) = ��𝑣𝑖𝑗

|𝐴𝑖|

𝑗=1

𝑝

𝑖=1

𝑝

𝑖=1

where 𝑣(𝐴𝑖) denotes the value of the ith bookshelf.

IV. EXAMPLE
Having defined the elements of the greedy algorithm,

we can see how we apply the algorithm in a real example.
Suppose we have 3 bookshelves with capacity of 4

books (𝑝 = 3 and 𝐿 = 4). Our list of books is
summarized in the table below:

Table 1. Books List

Number Category ID Value
1 1 1 57
2 1 2 37
3 1 3 24
4 1 4 9
5 1 5 92
6 2 1 50

7 2 2 99
8 2 3 65
9 2 4 89

10 2 5 53
11 2 6 39
12 2 7 98
13 2 8 62
14 3 1 37
15 3 2 11
16 3 3 45
17 3 4 22
18 3 5 77
19 3 6 6
20 3 7 0

From this table, we can infer that there are 3 categories

of books (𝑚 = 3), with 5 books of category 1 (𝑛1 = 5), 8
books of category 2 (𝑛2 = 8), and 7 books of category 3
(𝑛3 = 7). As there are 3 bookshelves, the greedy
algorithm will be done in 3 steps.

1. Step 1
At the beginning of each step, we construct the

candidate set. In this step, the candidate set is:

Table 2. Candidate Set for Step 1

Candidate Sum of Value
{ } 0

{𝑏11} 57
{𝑏12} 37

… …
{𝑏11,𝑏12} 94

… …
{𝑏11,𝑏12,𝑏13,𝑏14,𝑏15} 219

{𝑏21} 50
{𝑏22} 99

… …
{𝑏22,𝑏23,𝑏24,𝑏27} 351

… …
{𝑏21,𝑏22,𝑏23,𝑏24,𝑏25,𝑏26,𝑏27,𝑏28} 555

{𝑏31} 37
… …

{𝑏31,𝑏32,𝑏33,𝑏34,𝑏35,𝑏36,𝑏37} 198

It would be too long to enumerate all the candidates, so

I only show a few of them.
After constructing the candidate set, we proceed to

select one which gives the maximum sum of value, which
is {𝑏21,𝑏22,𝑏23,𝑏24,𝑏25,𝑏26,𝑏27,𝑏28} (555 sum of value),
and remove it from the candidate set. Before we insert it
into the solution set (which is still an empty set now), we
must test it with the feasibility function. Since it has 8
elements, it does not pass the feasibility function, and we
should repeatedly seek to find another candidate. Among
all candidates that pass the feasibility function, the
candidate which has the greatest sum of value is
{𝑏22,𝑏23,𝑏24,𝑏27} (351 sum of value). Therefore, we

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

insert it into the solution set and conclude step 1. The
current solution set is �{𝑏22,𝑏23,𝑏24,𝑏27}�.

One last task in this step is removing the books
𝑏22,𝑏23,𝑏24,𝑏27 from our list of books (and putting them
into the first bookshelf). We will not consider these books
in the remaining steps.

2. Step 2
Using the same method as in step 1, we select the

candidate {𝑏11,𝑏12,𝑏13,𝑏15} (210 sum of value). Be wary
that the candidate set in each step is different, as we do
not consider books that have been put into a bookshelf.
After inserting the candidate into the solution set and
removing the books in it from our list of books, we can
proceed to the final step.

The solution set is now �{𝑏22,𝑏23,𝑏24,𝑏27},
{𝑏11,𝑏12,𝑏13,𝑏15}� (561 value total).

3. Step 3
The best candidate for this step is another set of books

from category 2: {𝑏21,𝑏25,𝑏26,𝑏28} (value = 204).
Adding it to the solution set, we get the final solution set,
�{𝑏22,𝑏23,𝑏24,𝑏27}, {𝑏11,𝑏12,𝑏13,𝑏15}, {𝑏21,𝑏25,𝑏26,
𝑏28}�, which gives us 765 sum of value. The books
arrangement can then be summarized in the table below.

Table 3. Final Books Arrangement and Total Value

Bookshelf Category Books Value
1 2 𝑏22,𝑏23,𝑏24,𝑏27 351
2 1 𝑏11,𝑏12,𝑏13,𝑏15 210
3 2 𝑏21,𝑏25,𝑏26,𝑏28 204

Total 765

Analysis
Though this example doesn’t quite represent a real-

world example (where can you find a bookstore which
has only 20 books?), we can still perform some analysis.

We see that it is possible to put books of the same
category in two or more bookshelves (category 2 in this
example), as long as their sum of value is the greatest of
all the candidates that pass the feasibility function. It is
also possible that books of a certain category are not put
in a bookshelf at all (category 3 in this example).

A curious person might ask, “Does this greedy
algorithm always yield the best solution for the books
arrangement problem?” The answer is yes, since we
select, at each step, the best candidate available, hence for
each element (bookshelf) in the solution set, its value is
greater than the value of every remaining books candidate
(which passes the feasibility function) after the books are
removed from the list of books.

Finally, there is an improvement to the algorithm,
although this improvement will make the algorithm
deviate slightly from the original greedy algorithm. By
rewriting the selection function, we can safely not
construct the candidate set and still get the best candidate
in each step. Moreover, the selected candidate is
guaranteed to pass the feasibility function and all the
books in the candidate will automatically be removed

from the list of books. Here is the pseudo-code for the
selection function.

function selection(books: list of book;
numCateg, capacity: integer)  candidate
{Returns the candidate which has the
maximum sum of value from the list of
books. The candidate returned is guaranteed
to pass the feasibility function.}

LIBRARY
bookCategs : list of candidate {initially
each candidate is an empty set}
bs, maxBooks : candidate
b, min : book
i: integer
vals : array of integer [1..numCateg]

ALGORITHM
i traversal 1..numCateg
 vals[i]  0

i traversal 1..books.size
 b  books[i]
 bs  bookCategs[b.category]
 if (bs.size < capacity) then
 bs.add(b)
 vals[b.category]  vals[b.category] +
 b.value
 else
 min  findMin(bs)
 if (b.value > min.value) then
 bs.remove(min)
 bs.add(b)
 vals[b.category] vals[b.category]
 - min.value + b.value

maxBooks  bookCats[maxIdx(vals)]
i traversal 1..maxBooks.size
 books.remove(maxBooks[i])

 maxBooks

function findMin(books: candidate)  book
{Returns the book with the least value in
books}

LIBRARY
min : book
i : integer

ALGORITHM
min  books[0]
i traversal 2..books.size
 if (books[i].value < min.value) then
 min  books[i]
 min

function maxIdx(vals: array of integer) 
integer
{Returns the index of the category which
has the maximum sum of value.}

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

LIBRARY
i, max : integer

ALGORITHM
if (vals.length = 1) then
  0
else
 max  0
 i traversal 1..vals.length
 if (vals[i] > vals[max]) then
 max  i
  max

V. SUMMARY
From the description and the example in previous

sections, we can summarize several points:
1. Greedy algorithm for the books arrangement

problem always gives the optimal solution.
2. In solving the books arrangement problem with

this algorithm, our focus is not on comparing
selection functions. We assume that each book
already has some value prior to the application of
the algorithm. The selection function merely
selects a candidate that has the greatest value.
Thus, given some number of books and their
values, we only seek to construct the solution set,
that is, finding which books to be put in which
bookshelf so we get the maximum sum of value of
these books.

3. There is a polynomial time algorithm for the
selection function (given as pseudo-code in section
IV). This selection function also saves us the work
of constructing the candidate set prior to the
selection function call.

4. Although we have only discussed the application
of the algorithm for arranging books based on their
categories, we can extend the algorithm to arrange
books based on anything; for example, based on
their titles.

REFERENCES

[1] Munir, Rinaldi. Diktat Kuliah IF3051 Strategi Algoritma. Institut
Teknologi Bandung, 2009, pages 26-31.

STATEMENT

Hereby I declare that this paper is my own writing, not an
adaptation, a translation, nor a plagiarism.

Bandung, December 8th 2011

OKIRIZA WIBISONO

13509018

	I. INTRODUCTION
	II. THEORETICAL BASIS
	III. APPLICATION
	IV. EXAMPLE
	V. SUMMARY
	REFERENCES
	STATEMENT

