
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Dynamic Programming on

Plagiarism Detecting Application

Edwin Lunando/13509024

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

edwinlunando@gmail.com

Abstract—Plagiarism in text or document is an issue that

strongly concerned by the academic community. Nowadays,

the most common text plagiarism occurs by making a set of

minor alterations that include the insertion, deletion, or

replacing words. The paper will present two plagiarism

detection method. The first one is derived from Levenshtein

Distance and the other one is derived from Longest Common

Subsequence that was a classical tool in the indentification of

local similarities in biological sequences. Based on the

results, Both algorithm give significant improvement from

the brute force method. In the future, it would be interesting

to explore some heuristics method to improve the efficiency.

Index Terms—dynamic programming, levenshtein

distance, longest common subsequence, plagiarism.

I. INTRODUCTION

In this days, there are numerous amount of academic

paper and journal that published everyday. Since every

academic will have to write at least one paper in their

entire academic life, there will be a huge amount of

people who share the same topic of their paper. Moreover,

in this era, people would search at their favorite search

engine to find their paper material. Because their

keywords is basically similar to each other, they would

seen the same page. There are a lot of people would copy

those materials without giving any credits to the writer.

This action was highly concerned by the academic

community, but since there were numerous amount of

papers that were published, checking each paper manually

or using the brute force method would be infeasible. We

need a more efficient algorithm to improve the work

performance to check the integrity of one paper.

Figure 1 The plagiarism

The purpose of this paper is to give a solution for

people that having a hard time to check the integrity of

numerous paper. After reading this paper, the writer hope

that the readers will understand a better method to check

plagiarism and save a lot of time while checking a paper.

The paper will also give the analysis of the complexity of

all algorithm that would be used in the problem in details.

And finally, the paper will show that plagiarism checking

problem could be solved efficiently with both proposed

algorithm, the Levenshtein distance and Longest Common

Subsequence(LCS). An example java application is

created to analized the algorithm.

II. THEORY

II.I Dynamic Programming

Dynamic Programming(DP) is a method for solving

complex problems by breaking them down into simpler

subproblems. It is applicable to problems exhibiting the

properties of overlapping subproblems which are only

slightly smaller and optimal substructure (described

below). When applicable, the method takes far less time

than naive methods.

The key idea behind dynamic programming is quite

simple. In general, to solve a given problem, we need to

solve different parts of the problem (subproblems), then

combine the solutions of the subproblems to reach an

overall solution. Often, many of these subproblems are

really the same. The dynamic programming approach

seeks to solve each subproblem only once, thus reducing

the number of computations. This is especially useful

when the number of repeating subproblems is

exponentially large.

Top-down dynamic programming simply means storing

the results of certain calculations, which are later used

again since the completed calculation is a sub-problem of

a larger calculation. Bottom-up dynamic programming

involves formulating a complex calculation as

a recursive series of simpler calculations.

II.II Levenshtein Distance

In information theory and computer science, the

Levenshtein Distance is a string metric for measuring the

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

amount difference between two sequences. The term edit

distance is often used to refer specifically to Levenshtein

distance.

Figure 2 Example of Levenshtein Distance

The Levenshtein distance between two strings is

defined as the minimum number of edits needed to

transform one string into the other, with the allowable edit

operations being insertion, deletion, or subtitution of a

single character. It is named after Vladimir Levenshtein,

who considered this distance in 1965.

II.III Longest Common Subsequence

The longest common subsequence problem is to find

the longest subsequence common to all seqeuence in a set

of sequence. Note that subsequence id different from

substring. It is a classic computer science problem, the

basis of file comparison programs such as diff, and has

applications in bioinformatics.

Figure 3 Example of LCS

Biological applications often need to compare the DNA

of two different organism. A strand of DNA consists of a

string of molecules called bases. One reason to compare

two strands of DNA is to determine how similar the two

strands are, as some measure of how closely related the

two organisms are.

III. ALGORITHM ANALYSIS

III.I The Naïve Method

At the first time, the brute force method will be

analized because any other algorithm will be measured by

brute force algorithm. The main problem is to calculate

the similarity ot difference of a document with other

document in percent. It means we need to calculate the

number of different and similarity of both document. In

order to achieve that, we need to compare all combination

of strings that appear in the document with the other one.

Clearly a solution like this, that creating all permutations

of substrings in a document will lead to factorial

complexity O(n!).

The solution is not appropriate because most document

has more that 200 words. Clearly whis solution is

unfeasible because it would take forever to compare two

documents. Clearly, we need a better solution.

III.II The Levenshtein Distance Method

The Levenshtein method is using dynamic

programming approach. Computing the Levensthein

distance is based on the obsevation that if we reserve a

matrix to keep the Levensthein distance between all

prefixes of the first string and all prefixes of the second,

then we can calculate the values in the matrix by flood

filling the matrix, and then we can find the distance

between two strings by the time the lash value is

computed. This algorithm, an example of bottom-up

dynamic programming.

The matrix is filled from the upper left to the lower

right corner. Each jump horizontally or vertically

corresponds to an insert or delete, respectively. The cost

is normally set to 1 for each of the operations. The

diagonal jumap can cost either one, if the two characters

in the row and collumn di not match or 0, if they do. Each

cell always minimize locally because this problem has an

optimal substructure. This way, the number in the lower

right corner is the Levenshtein distance between both

words .This is an example code of Levenshtein distance in

java programming language.

public int LDistance(String f, String s) {
 int n = f.length();
 int m = s.length();
 int cost = 0;
 int[][] dp = new int[n + 1][m + 1];
 for (int x = 0; x <= n; x++) {

 dp[x][0] = x;
 }
 for (int x = 0; x <= m; x++) {

 dp[0][x] = x;
 }
 for (int x = 1; x <= n; x++) {
 for (int y = 1; y <= m; y++) {

 if (f.charAt(x - 1) == s.charAt(y - 1)) {
 cost = 0;
 } else {
 cost = 1;
 }

 dp[x][y] = Minimum((dp[x - 1][y] + 1),
(dp[x][y - 1] + 1), (dp[x - 1][y - 1] + cost));

 }
 }
 return dp[n][m];
 }

 public int Minimum(int a, int b, int c) {
 int mi = a;

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

 if (b < mi) {
 mi = b;
 }
 if (c < mi) {
 mi = c;
 }
 return mi;

 }

This method calculate the number of differences of two

strings. Due to two nested loops, we could conclude that

the computational complexity of this algorithm is

polinomial O(N
2
), much more efficient that the brute force

algorthm that has factorial complexity O(n!).

After we obtain the number of differences between two

documents, by using simple formula, we could calculate

the percentage of the differences between those two

documents.

P = L distance/Number of characters x 100%

By this result we could determine differences

efficiently. There are a number of improvement to this

algorithm:

 We can adapt the algorithm to use less space, 2 x

O(min(n, m)) instead of O(mn), since it only

requires the previous row and current row be

stored at any one time.

 We can store the number of insetions, deletions,

and replacement seperately, or even the posistion

at which they occur.

 By examining diagonal instead of rows, and by

using lazy evaluation, we can find the Levenshtein

distance in O(m (1 + d)) time, which is much

faster that the regular dynamic programming if the

distance was small.

III.III The LCS Method

The LCS method is using the dynamic programming

approach. The LCS problem has an optimal substructure,

which means the problem can be broken down into

smaller subproblem uuntil the solution becomes trivial.

The subproblem become simpler as the sequences

become shorter. Shorter sequences are conviniently

described using the term prefix. A prefix of sequence id

the sequence with the end of cut off. This method relies on

the following two properties.

The first one is, suppose that two sequences both end in

the same element. To find their LCS, shorten each

sequence by removing the last element, find the LCS of

the shortened sequences, and to that LCS append the

removed element.

The second one is, Suppose that the two sequences X

and Y do not end in the same symbol. Then the LCS of X

and Y is the longer of the two sequence. By this two

properties, now we could define the LCS function easily.

Let two sequences be define as follows: X = (x1,x2,…xm)

and Y = (y1,y2,…yn) then, let LCS (Xi,Yj) represent the set

of longest common subsequence of prefixes Xi and Yj.

Figure 4 Longest Common Subsequence

This is an example code of the LCS in java programming

language.

public int lcs(String x, String y) {
 int m = x.length(), n = y.length();
 int[][] b = new int[m + 1][n + 1];
 for (int q = 0; q < m; q++) {
 for (int p = 0; p < n; p++) {
 if (x.charAt(q) == y.charAt(p)) {
 b[q + 1][p + 1] = b[q][p] + 1;
 } else {
 b[q + 1][p + 1] =

java.lang.Math.max(b[q + 1][p], b[q][p + 1]);
 }
 }
 }
 return b[m][n];

 }

While Levenstein distance calculate the number of

differences between two document, the LCS calculate the

similarities between two documents. Due to two nested

loops, the computational complexity of this algorithm is

polinomial O(N
2
), the same with Levenstein distance that

was much more efficient than the naïve method.

P = LCS/Number of characters x 100%

Within this formula, we could easily see the similarity

percentage between two documents with efficient

resources compared to the naïve method.

Most of the time taken by the naïve algorithm is spent

performing comparisons between items in the sequences.

For textual sequence such as source code, you want to

view lines as the sequence elements instead of single

characters. This can mean comparisons of relatively long

strings for each step in the algorithm. Two optimization

can be made that can help to reduce the time these

comparisons consume.

A hash function can be used to reduce the size of the

strings in the sequences. That is,for source code where the

average line is 60 or more characters long, the hash for

that line might be only 8 to 40 characters long.

Additionally, the randomized nature of hashes would

guarantee that comparisons would be faster, as lines of

source code will rarely changed at the beginning.

Like the Levenshtein method, we can reduce the

required space into 2 x min (m, n) as the dynamic

programming approach only needs the current and

previous collumns in the matrix.

IV PLAGIARISM ANALYSIS WITHIN TWO ALGORITHM

Since both algorithm had the same complexity and

similar constant, the running time of both algorithm

should be similar to each other. A java application is

made to test and analize the validity and the efficiency of

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

the algorithm. Moreover, with this test, we could analize

the pattern on plagiaristic documents.

Figure 5 Plagiarism Detecting Application

The similarity will be calculated by LCS algorithm and

the difference will be calculated by the Levenshtein

algorithm. The following figure will compare two file

texts with slight modification from the other one.

Figure 6 Test simple case

Clearly from the result we could conclude that those

two files are almost identical. In order to know the

standard of plagiaristic document that use find and replace

technique, we need to conduct research on those kind of

document. After testing the application for some

plagiaristic document, there are some pattern that we

could see the diifference between plagiaristic document

and the one that not.

Figure 7 Plagiaristic Document

Most plagiaristic document has the similarity range

between 30%-60% depend on the number of insertion,

deletion, and replacement. After analized the document,

we could found that plagiaristic document would only

replace some important words and left the other as it is.

Document with more than 60% similarity will be

considered almost identical due to high percentage of

similarity, while unplagiaristic document got less than

20% of similarity. Most of the document, even though

they are has the same topic, there are a lot of difference in

the document. Intiutively, we could think that every

people has its own way of writing so that the words that

used in the document are the writer preference, only the

main topic keywords that increase the similarity.

Figure 8 Unplagiaristic Document

After condunting all the research on both type of

document, actually we could indentify the difference

between plagiaristic document and not. Both algorithm is

suffice to indentify the similarity or the difference

between two document.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

V. CONCLUSION AND ADVICE

So, instead of using the naïve method that could that

takes forever to find the number of differences on two

documents, we have two alternate more efficient

algorithm to calculate the similarity or difference of two

documents.

From the research, we could conclude that

unplagiaristic documents has the similarity percentage

below 20% due to different writing types for each person,

while plagiaristic documents has the range 30%-60%.

For the future, we could use the heuristic search to

improve the efficiency of the algorithm because with

polinomial complexity there are some limit that a normal

personal computer could calculate in time. There are a lot

of type of heuristic we could use to lower the running time

of the algorithm.

REFERENCES

[1] Che, Xin, 2003. Shared Information and Program Plagiarism

Detection.[Online] (updated 13 May 2003). Available at:

http://monod.uwaterloo.ca/papers/ [Accessed 8 December 2011]

[2] Su, Xhan, 2008. Plagiarism Detection with Levenshtein Distance

and Smith-Waterman Algorithm.[Online] (updated 8 June 2008).

Available at: http://www.mendeley.com/research/plagiarism-

detection-using-the-levenshtein-distance-and-smithwaterman-

algorithm[Accessed 8 December 2011]

[3] Rouch, Erick, 2009.Dynamic Programming.[Online] (updated 10

January 2009). Available at:

http://www.avatar.se/molbioinfo2001/dynprog/dynamic.html

[Accessed 8 December 2011]

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2011

ttd

Edwin Lunando/13509024

