
IF3051 Strategy of Algorithms – Sem. I Year 2010/2011 Paper

Greedy And DFS In Huffman Coding

Raydhitya Yoseph 13509092

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13509092@std.stei.itb.ac.id

raydhitya.yoseph@gmail.com

Abstract—This paper contains explanation of Huffman

coding algorithm in encoding and decoding. The explanation

sequence are Huffman coding, greedy algorithm, Huffman

encoding, deep first search algorithm, and Huffman decoding.

All the explanation show Huffman encoding uses greedy

algorithm and Huffman decoduing uses deep first search

algorithm.

Index Terms—algorithm, coding, DFS, greedy, Huffman.

I. HUFFMAN CODING

Huffman coding is a very popular coding to represent

data with minimum memory needed to store the data.

Huffman coding was created to reduce data redundancy in

a file. Huffman coding was developed by David A.

Huffman while he was a Ph.D., student at MIT, and

published in the 1952 paper “A Method for the

Construction of Minimum-Redundancy Codes.

A. Character Encoding

One file compromised of many bits to represent its

content. That bits is grouped into sets of bits. This

grouped bits represent something that understandable in

human language. For example the character 'a' is

represented by 01000001. Changing the representation of

bits into character is called character encoding scheme.

Representation of the human readable character is highly

dependent at the coding used. For example ASCII and

UNICODE have different representation of the character

„a‟ in bits.

B. Statistical Data Redundancy

A character can be inside the file multiple times. For

example in the string “sunny”, the data of character 'n' is

inside the string twice and therefore stored twice. Storing

a character more than once is what we called statistical

data redundancy. It is redundant and wasting space to

store the same data more than once, even though, the

character needs to be more than once to complete the

information. This what the Huffman coding accomplishes

which is storing an information in a efficient way using

minimum memory.

C. Huffman Coding

The idea of Huffman coding is using the frequency of

data inside a file. Data which has the highest frequency

being assigned by the shortest bit and data which has the

lowest frequency being assigned by the longest bit. This

means using variable-length data as opposed to fixed-

length data in the raw information. Fixed-length all data

have same length whether the data is frequent or not. This

will cause an information needs larger space.

Bit assigning is determined by making a tree structure

data first. Each node from top to bottom will contain data

from the most frequent to the least frequent data. The

consensus is left child assigned by '0' and right child by

'1'. The tree will continue to span until it reaches a leaf

that contains one data. So, a node in Huffman tree will

always have two children.

Bit assigning also depends on the amount of unique

data. If there are two data, we only need '0' and '1'. If there

are three data, we need '0', “10”, and “11”. The more the

data are, the longer the bit needed. Compared to 8 bit

extended ACII binary code which often used, Huffman

coding save many wasted space.

Given a string there are 4 step to do the coding:

1. Count the frequency of each character in the string;

2. Form the Huffman tree based on the character

frequency from bottom up using greedy algorithm;

3. Assign each character in the tree according to the

convention bit;

4. Convert the given string old bits representation into

new bits representation using the Huffman code for

each charcter.

II. GREEDY ALGORITHM

A. Definition

Given a problem and find its best solution. One from

many ways to do that is by greedy algorithm which solve

the problem step by step. Greedy algorithm is an

algorithm that choose the best solution at each stage,

which called local optimum, in hoping to get the best

solution for the problem, called global optimum.

The choices made during each stage is the best solution

for the current stage and without calculating future

mailto:13509092@std.stei.itb.ac.id
mailto:raydhitya.yoseph@gmail.com

IF3051 Strategy of Algorithms – Sem. I Year 2010/2011 Paper

consequences. This what made greedy algorithm will not

always give the best solution for the problem because the

best solution for the current stage is not always the best

solution.

The choices made cannot be changed, once an element

choosen as the best solution at the current stage and be

added to the solution it will remain the solution until the

end. The best solution at each stage can be made by all

information given for each element in candidate set. For

example in a candidate set each of the elements have

information A and information B. The best choices can be

made calculating information A hence greedy by A or

calculating information B hence greedy by B.

B. Property

Generally greedy algorithm has 4 properties:

1. Candidate Set

A set contains element from which a solution is

created.

2. Solution Set

A set contains solution elements from the best

candidate. This set is a subset of candidate set.

3. Selection Function

A funtion which select the best candidate from

each step.

4. Feasibilty Function

A function which check whether the best candidate

can be added to the solution or not given the

constraints.

5. Objective Function

A function which add a value to the solution

Using the general property of greedy algorithm the

algorithm can be constructed as follows:

1. initialize solution set with empty set;

2. select a value from the candidate set using the

selection function;

3. remove the choosen value from the candidate set;

4. check if the choosen value can be added to the

solution or not using feasibility function;

5. if the choosen value can be added to the solution,

add it to the solution;

6. repeat number 2 until candidate set is empty;

7. if candidate set is empty the solution set is the

solution for the problem.

III. ENCODING HUFFMAN CODE

Forming huffman tree after calculating the frequency of

all the characters appearing in the given string is one

example of greedy algorithm. Huffman tree is formed

from bottom to top by joining two least frequent data into

one and continue up.

Greedy properties of forming Huffman tree procedure

1. Candidate Set

Trees each of which is one node containing each of

the characters which appeared in the given string

and its frequency.

2. Solution Set

The Huffman tree which contains all elements from

the candidate set.

3. Selection Function

A function which gives two trees with the

minimum root node character frequency.

4. Feasibility Function

Not exist because all elements in the candidate set

will be in the solution set.

5. Objective Function

A procedure which combines two trees given by

the selection function.

 Using above properties forming Huffman tree

algorithm can be constructed as follows:

1. initialize solution set with candidate set;

2. select two trees from the candidate set;

3. combine the two tree into one with root node

frequency is the sum of the two trees‟ root node

frequency

4. Repeat number 2 and 3 until one tree left

An example of the algorithm using following

information

Table 1 Huffman Table 1

Symbol A B C D E

Frequency 15/39 7/39 6/39 6/39 5/39

With the selection function two trees which have the

lowest frequency are choosen. Two trees with the lowest

frequency are D and E. Those two trees combined

together forming a tree with root node frequency equals to

D and E frequency which is 11/39. The first step will

make the table as follows

Table 2 Huffman Table 2

Symbol A B C DE

Frequency 15/39 7/39 6/39 11/39

With the selection function two trees which have the

lowest frequency are choosen. Two trees with the lowest

frequency are B and C. Those two trees combined

together forming a tree with root node frequency equals to

B and C frequency which is 13/39. The second step will

make the table as follows

Table 3 Huffman Table 3

Symbol A BC DE

Frequency 15/39 13/39 11/39

Two trees with the lowest root node frequency are BC

and DE. Those two trees are selected by the selection

function and combined together forming a tree with root

node frequency equals to BC and DE root nodes

frequencies which is 24/39. The third step will make the

table as follows

IF3051 Strategy of Algorithms – Sem. I Year 2010/2011 Paper

Table 4 Huffman Table 4

Symbol A BCDE

Frequency 15/39 24/39

Both tree A and tree BCDE will be choosen to form

tree ABCDE with root node frequency is 39/39. The

algorithm will stop because the amount of remaining tree

is one.

Above algorithm will be easier to understand

represented using tree

Figure 1 Huffman Tree

The algorithm will make symbol given with following

code

Table 5 Huffman Coding Result

Symbol ASCII Code Huffman Code

A 0100 0001 0

B 0100 0010 100

C 0100 0011 101

D 0100 0100 110

E 0100 0101 111

If we used fixed-length data, we need 8*39 = 312 bit. If

we used variable-length data as the Huffman code, we

only need 1*15 + 3*7 + 3*6 + 3*6 + 3*5 = 87 bit.

Huffman coding saved 312-87 = 225 bit, which is a huge

72.11% of space. Averagely Huffman coding will save

20% to 30% of space

VI. DEEP FIRST SEARCH

Given a tree there are two ways to traverse the graph,

which are breadth first search and deep first search.

Breadth first search is a searching algorithm which

begins at root node and explores all the neighboring

nodes. For all the nearest neighboring nodes, the search

explores its neighboring nodes and so on until the goal.

Deep first search is a searching algorithm which begins

at root node and explores each branch as far as possible

until the goal. The algorithm can be modified using

bactracking which traverses the previous node when the

goal is not reached.

Deep first search can be implemented recursively and

non-recursively. The algorithm recusively is as follows:

1. start at root node;

2. check whether the node is the goal or not;

3. if the node is the goal, stop searching;

4. if the node is not the goal, choose one child;

5. recursively traverse the child tree;

6. do number 2 to 4 until the goal.

The algorithm non-recursively using a queue as

follows:

1. start at root node;

2. add the root node to queue;

3. take the first node of the queue out;

4. check whether the node is the goal or not; if yes,

stop searching;

5. add all neighboring nodes to the queue;

6. repeat number 3 to 4 until queue is empty.

VI. DECODING HUFFMAN CODE

Above process is called coding which is to convert

information into another form of representation, in

Huffman code case into a tree structure data. This process

is done for the information to get communicated. To

recognize the information again, we need the reverse

process which is called decoding. Decoding converts the

information back into its original representation so it

could be recognized by the receiver.

Decoding an information coded with Huffman coding

can be achieved by two means. First is to traverse the tree,

write the symbol found during the traversal, traverse again

from the tree's root. The first method is a modified version

of deep first search algorithm. Second is to use a lookup

table which contains all symbols and its bit code. To

compare the two methods we'll use previous example and

try to decode “01100111” into “ADAE”.

A. Traversing Huffman Tree

The idea of the first method is to traverse the Huffman

tree bit by bit and write the symbol found. To decode

IF3051 Strategy of Algorithms – Sem. I Year 2010/2011 Paper

“01100111” we traverse the string and find '0'. Like DFS

we begins from root node. In here the implementation is

better to implements recursive DFS. We only doing

recursive into the child node with coresponding bit with

the string. So we are doing recursive into the root's child

assigned by '0'. There we find a symbol which is A

therefore we write 'A' and back again to the tree's root.

Second traversal we find the bit '1' so we do recursive

to the right child from the root node. At the right child we

don't find a symbol therefore we traverse into the next bit

which is '1' and again move to the right child. The second

right child also doesn't contain a symbol so we move to

the next bit which is '0'. Moving to the left child will get

us a symbol which is 'D'. We write 'D' and again come

back to tree's root.

Repeating the process will get us 'A' and 'E' as the next

symbol. After the last symbol, there is no next bit so the

bit stream “01100111” finished decoded into “ADAE”.

This search is better implemented recursively because

we will always find the goal in the branch we are

traversing and do not need the other branch.

Notice that we don't record anything from the bit stream

we simply traversing it which is different with the second

method.

B. Lookup Table

The idea of the second method is to provide a lookup

table which contains all the symbols and the bit assigned

to that symbol. The process is to traverse only the bit

stream not including the Huffman tree.

First we make a lookup table that contains all symbol

with their respective bit assignment. The table basically is

Table 5. Next we traverse the bit stream and traversing the

bit stream will net us '0' as the first bit. We record the bit

and then search the table whether there is or not a symbol

assigned by the bit '0'. We found 'A' is assigned by '0' in

the table so we write the symbol 'A' and can search for the

next symbol.

The difference between the first method we only

traversing to the next bit and don't come back to the tree's

root. The next bit we net is '1', we record it and search the

table. There is no symbol assigned by '1' so we traverse

the next bit. Again we find '1', we record it which made

our current bit stream become “11”. Do the second search

with “11” will also net us with nothing. Traversing the

next bit our current bit stream become “110”. Searching

that will get us the 'D' symbol. We write the symbol and

can start to search for the next symbol. Repeating the

process will make us decode “01100111” bit stream into

“ADAE”. Notice that the second difference between the

first method is we record the bit we currently search the

symbol for.

Modifying the second method, we could also save the

bit assigned to a symbol length. We then can use that

information to modify the traversal. Traversing our bit

stream again will get us the first '0' and the first 'A'. The

next bit will be '1'. Notice that all bit assigned to a symbol

beside the symbol 'A' have the length 3. So, when we get a

'1' after we found a symbol, we traverse the stream three

times while recording each bit. After that, we search the

table to find the symbol. Back to the bit stream we will get

“110” and can then search the table to find the symbol 'D'.

Repeating the process, once again we decode the

“01100111” bit stream into “ADAE”.

Figure 2 Huffman Decoding

Both code will have their use in different ways.

Traversing the bit stream and Huffman tree is more

complex than traversing only the bit stream. Searching a

table with too many data is also troublesome. In the end

what we want to decode that matters. Whether the

information is long or not and whether the information is

being build by many data or not.

VII. CONCLUSION

The conclusion of the explanation:

1. Huffman encoding uses greedy algorithm by

minimum frequency;

2. Huffman decoding uses BFS implemented in

recursive;

3. BFS in Huffman decoding only doing recursive to

one of the child node from two child nodes.

REFERENCES

[1] http://en.wikipedia.org/wiki/Data retrieved at 8th December 12:17

[2] http://en.wikipedia.org/wiki/ASCII retrieved at 8th December

12:19

[3] http://en.wikipedia.org/wiki/Character_encoding retrieved at 8th

December 12:20

[4] http://en.wikipedia.org/wiki/Redundancy_(information_theory)

retrieved at 8th December 12:26

[5] http://en.wikipedia.org/wiki/Greedy_algorithm retrieved at 8th

December 14:24

[6] Rinaldi Munir, Diktat Kuliah IF3051 Strategi Algoritma,

Bandung: Teknik Informatika ITB, 2009, pp 36-31, 108-113.

[7] Raydhitya Yoseph, “Huffman Coding For Your Digital Music

Hearing Pleasure”, unpublished, 2009.

[8] http://en.wikipedia.org/wiki/Depth-first_search retrieved at 8th

December 22:51

[9] http://manoftoday.wordpress.com/2007/11/12/algorithm/ retrieved

at 8th December 22:54

[10] http://en.wikipedia.org/wiki/Breadth-first_search retrieved at 8th

December 23:11

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Redundancy_(information_theory)
http://en.wikipedia.org/wiki/Greedy_algorithm
http://en.wikipedia.org/wiki/Depth-first_search
http://manoftoday.wordpress.com/2007/11/12/algorithm/
http://en.wikipedia.org/wiki/Breadth-first_search

IF3051 Strategy of Algorithms – Sem. I Year 2010/2011 Paper

DECLARATION

I hereby declare the paper is my own writing, not an

adaptation, onr translation from another person paper, and

not a form of plagiarism.

Bandung, 9
th

 December 2011

Raydhitya Yoseph 13509092

