
English Word Segmentation Problem
Comparison of Algorithms

30 November 2011

13509099 Irvan Jahja dolphinigle.mailbox@gmail.com

Institut Teknologi Bandung

Jalan Ganesha 10,

Bandung 40132, Indonesia

ABSTRACTION
Word Segmentation Problem is the problem of
breaking down a long string (presumably a
concatenated string consisting of english words) into
space-separated English words. We will explain how
to solve this problem efficiently using Dynamic
Programming problem to achieve O(k*N + M) time
O(N + M) space complexity. Then, we will show that
by using Extended Suffix Trees, the time complexity
can be reduced further to average O(N + M) based
on some assumptions by using exact string matching
techniques. However, this optimization consumes
space and the overhead of using suffix tree is so high
that the trie eclipses the suffix tree performance for
practical input size.

This paper assumes familiarity with common
algorithms, such as Dynamic Programming and
Binary Search.

Keywords: bfs, df, dynamic programming, suffix
tree, trie

1. INTRODUCTION

1.1 STRING
First, we will formalize the definitions that we will
use throughout this paper. A string is a sequence of
characters. For the purpose of our paper, a character
is defined as either lowercase or uppercase latin
alphabet (i.e., 'a'-'z' and 'A'-'Z').

1.2 PROBLEM AND ASSUMPTIONS
Given a string S consisting of lower and uppercase
letters, and a list of distinct strings dic representing
the valid English words, return a list of strings such
that:

1) The concatenation of the strings in the returned
list in the given order is equal to S.

2) Each of the strings in the returned list is a
member of dic.

If no such list exists, return an empty list instead.
If more than one such list exists, return any of such
list.

For example, for a given S="catsanddogs", one
possible solution is {"cats", "and", "dogs"}. Note
that there also exists another solution, namely {"cat",
"sand", "dogs"}.

1.3 TRIE
The definition of a trie is as follows:

A trie T for a set of m distinct strings S is a rooted
directed tree with at most m leaves numbered 1 to
m. Exactly m of the nodes in the tree are marked, all
leaves must be marked. Each edge is labeled with a
character, no two edges out of a node can have the
same edge-label. The key feature of a Trie is that for
any marked node i, the concatenation of the edge-
labels on the path from the root to node i exactly
spells out a member of S.

A trie for : {"A", "to", "tea", "ted", "ten", "i", "in",
"inn"} - image courtesy of wikipedia.org

A trie will consume O(k) space, where k is the
total number of characters in S. It can be constructed
in O(k) space as follows. Start with a tree consisting
only a single node: the root. Then, for each T,

1



member of S, follow the path from the root that
spells out the longest possible prefix of T. Then, if it
completely spells T, mark the node. Otherwise create
several other nodes such that the path from the root
to the last of these nodes spells out T. Mark the
last node. It is easy to see that with our assumption
of constant number of alphabets this works in O(k)
time.

A trie is most useful to find if a particular string T
is a member of S. To check that, try to spell as long
as possible prefix of T in the trie. If it completely
spells T, and the last node is a marked node, then
T is one of S. Otherwise it's not. The complexity of
such operation is O(m), where m is the number of
characters in T. The fact that this complexity does
not depend on S is a remarkable property of a trie,
but perhaps the most surprising use of a trie is to sort
S in O(m) time.

1.4 SUFFIX TREE
Suffix Trees is a rooted tree that holds information
about all the suffixes of a string. More formally:

A suffix tree T for an m-character string S is a
rooted directed tree with exactly m leaves numbered
1 to m. Each internal node, other than the root, has
at least two children and each edge is labeled with
a nonempty substring of S. No two edges out of a
node can have edge-labels beginning with the same
character. The key feature of the suffix tree is that
for any leaf i, the concatenation of the edge-labels on
the path from the root to leaf i exactly spells out the
suffix of S that starts at position i. That is, it spells
out S[i..m]. (Gusfield, 1997)

For example, a suffix tree for xabxac is as follows.

(image courtesy
of http://algorithm.cs.nthu.edu.tw/~abnercyh/blog/
archives/2006/04/index.html)

A suffix tree can be constructed in O(m) time, for
example, using Ukkonen's algorithm [2]. Interested
readers are referred to the excellent explanation by
Gusfield in [1].

A particular question must now be answered: how
can we represent the suffix tree. If we naively store

the label of all the edges explicitly as a string, then
the tree will take O(m^2) space (for example,
consider the suffix tree for the string:
abababab....ab). So, instead of storing them
explicitly, we store the labels as two integers i and j,
representing the substring of S that labels the edge.
This way, each edge will take O(1) space.

Another observation is that the tree will have at
most O(m) nodes (including internal nodes). This
is because it has O(m) leaves, and the out-degree
of each internal node is at least 2 (according to the
definition of suffix tree). Hence, it can be proven by
induction that the number of nodes in the tree is less
than 2 * m.

A suffix tree allows many problems to be solved
in linear time. For instance, the exact matching
problem can be solved in linear time as follows.
Construct the suffix tree for the text. Then, follow
the path from the root according to the pattern. If
a path exists for the entire pattern, then that pattern
appears in the text for all the nodes below the end of
the path.

Our paper will use the fact that suffix tree can find
all the occurrences of a pattern in a text in O(length
of pattern + number of occurrences) time (assuming
that the text has been preprocessed into a suffix tree).
This is achieved by running the algorithm described
in the preceeding paragraph, and traversing all the
nodes below the end of the path. The key observation
is that the number of nodes (including internal
nodes) in the subtree below the path is O(K), where
K is the number of occurrences of pattern in text.
To see this, notice that all the leaves of the subtree
corresponds to a starting position for a match
between pattern and text. Hence, there are O(K)
leaves. It follows that since each of the internal node
must have a out-degree greater than or equal to 2
(according to the definition of suffix tree), there are
at most O(K) nodes in the subtree. Hence, using
either DFS or BFS to traverse the subtree will take at
most O(K) time.

Finding all occurrences of "a" in the suffix tree for
xabxc

2. SOLUTIONS

2

http://algorithm.cs.nthu.edu.tw/~abnercyh/blog/archives/2006/04/index.html
http://algorithm.cs.nthu.edu.tw/~abnercyh/blog/archives/2006/04/index.html


Both of our proposed solutions uses dynamic
programming. However, one will take advantage of
trie, while the other will make use of a suffix tree.

2.1 THE DYNAMIC PROGRAMMING,
NAIVE (O(N^3 LOG M))
Our dynamic programming will have a state for each
integer i between 0 and n, inclusive, where n is the
length of S. For each state i (we call DP[i]), it will
contain the information of whether it is possible to
solve the word segmentation problem for the
substring S[1..i]. It will also store, if it's possible,
another integer j which means that one possible way
is by separating S[1..i] into DP[j] + S[j+1..i]. That is,
it's for backtracking purpose.

Note that by using this state alone, we already
allows a naive O(N^3 log X) (X being the number
of words in dic) solution, assuming that dic is a
sorted array of English characters. The pseudocode
(we ignore the backtracking for conciseness) is as
follows:
Reset DP to all false

DP[0].is_possible = true

for i in range(0..n-1):

if (DP[i].is_possible):

for j in range(i+1..n):

if (S[i..j-1] member of
dic):

DP[j].is_possible = true

if (DP[n].is_possible):

Possible

else:

Impossible

Note that the complexity follows if we use binary
search to check the existance of S[i..j-1] in dic.

Also, we have to notice that this algorithm makes
no use of the assumption that the number of
alphabets is small. Hence, this algorithm will still
work in O(N^3 log M) time even if the alphabet size
grows linearly.

A slight improvement to the above algorithm is
immediate. In the second inner loop of the algorithm
above, instead of searching in the range (i+1, n), you
can search in the range (i+1, min(n, i+k+2)), where
k is the length of the longest word in the dictionary.
This should work in N * k^2 log M time. We will call
this algorithm as Naive+ for the performance results
in Section 3.

2.2 USING TRIE: O(N*K + M)
We note that the bottleneck of the solution above is
in the second loop. That is, the bottleneck is when we
check whether a substring originating at i+1 is part
of S. But we notice that this is exactly what a trie is
best at. Hence, the second solution tries to improve
this situation by using a trie. The algorithm looks as
follows:
DP[0].is_possible = true, the

others false.

for i in range(0..n-1):

if (DP[i].is_possible):

node = trie.root

for j in range(1..n-1):

if
!node.has_edge_label(S[j]):

break

node = node.edge_label(S[j])

if node.marked:

DP[j].is_possible = true

if (DP[n].is_possible):

Possible

else:

Impossible

Now, let's try to calculate its complexity. First,
the outer for loop works in O(N) time. Then, the
inner loop tries to traverse the trie without ever going
back. Hence, there must be at most k steps in the
second loop, where k is the length of the longest
path from the trie's root to one of its leaves. In other
word, k is the maximum length of an English word
in dic. The length of the longest word found in any
major published dictionary is 45 ([4]), hence, this
algorithm works in a much better time than the naive
algorithm. Furthermore one can observe that
although this is the worst case complexity, the
average case complexity should be much smaller
because there exists only an extremely small number
of words that's extremely long.

We have to note that trie implicitly assumes that
the alphabet size is small constant. Should it not,
traversing a node in a trie takes O(log N) time as
opposed to O(1) time. Hence, this algorithm will
work in O(N * k * log(N) + M * log(M)) time instead
of O(N*k + M).

3



2.3 USING SUFFIX TREE: AVERAGE
O(N + M)
The suffix tree approach imagines the states of the
dynamic programming as nodes. A directed edge
connecting node i to node j means that S[i+1..j] is
contained in dic.

Theorem 1: There is a one-to-one
correspondence between a word segmentation
problem's solution for a given string S and a given
dictionary dic with a path from node 0 to node n in
the graph given above.

Proof:
Consider a path in the graph we constructed from

node 0 to node n {0, x1, x2, ..., xm, n}. The
corresponding solution is: {1, x1} {x1+1, x2}, ...,
{xm+1, n}. From the way we construct the graph,
all of these are words in dic so this is a solution.
Furthermore, no solution will be mapped by two
distinct paths for otherwise, let xj be the first node
that differs in the path. Then, the {x(j-1) + 1, xj} in
both solutions will be different words.

Now, consider a solution: {w1, w2, ... wk}. Let
len(w) be the length of the word. Then, construct the
path as follows: {0, len(w1), len(w1) + len(w2), ...,
len(w1) + ... + len(wk) = n}. Since each of wi is part
of dic, there will be edges between the nodes in our
path. Hence, it's a path in our graph and our proof is
complete.

Our solution works by first constructing the
graph, then using memoized graph traversal for
searching a path from node 0 to node n. We construct
the graph by using suffix tree to achieve great
performance. First, we construct a suffix tree for
S. Then, for each word W in dic, we look for all
occurrences of that pattern in S. Then, for each
occurrence i, we add an edge from node i-1 to node
{i + len(W) - 1}. The pseudocode is as follows.
suffix_tree_root = Create(S)

for word in dic:

int[] occurrences =

suffix_tree_root.FindAll(word)

for i in occurrences:

node[i - 1].AddEdge(

i + word.length() - 1)

The complexity of this part of the code is equal
to sum of the out-degrees of all the nodes plus the
total length of all the patterns. We can bound this
by bounding the degree of each node. The maximum
possible out-degree of a node is the maximum
number of distinct words in dic such that for each
pair of words in this set, one is a prefix of another.

This is, however, an obvious over-estimation over
the average case. However this alone already yields
a linear time bound for the pseudocode above since
that number turns out to be a small constant for the
case of English words.

To complete our algorithm, we present a
pseudocode for searching a path in the graph. For
simplicity, we do not include the backtracking in our
pseudocode:
boolean FindAPath(int node):

if node is visited:

return failed

else:

if (node == n):

return success

for i adjacent to node:

if FindAPath(i):

return success

return failure

The complexity of this part of code is O(n).
Hence, the entire code works in O(n + m)

A little note should be made about this
complexity. This linear complexity is dependant on
the content of dic, hence, it's semantic-sensitive.
Therefore, the author has opted to use average O(n)
instead of regular O(n) for declaring our complexity.
Note that there exists a detrimental dictionary that
causes this algorithm to use both O(n^2) time and
space complexity. For example, a dictionary
consisting {"a", "aa", ..., "aaa...aaa"}.

As a final note, suffix tree performance depends
on the alphabet size. If the alphabet size is
unbounded, constructing a suffix tree takes O(N log
N) time and traversing an edge takes O(log N) time.
Hence, the algorithm would work in O(n log n + m
log n) time in this situation.

3. PERFORMANCE
COMPARISON
We compared performance of the three algorithms.
For simplicity, we do not implement backtracking
because the backtracking extension for all three
algorithms, although obvious, is cumbersome and
irrelevant to our performance measure. The author
is aware that different implementations of the
algorithm may yield to different performance and
hence the following measurements are not absolute.
The author used the list of English words provided
for free in [3]. Again for simplicity we only use
lowercase letters.

4



We pick random words from the dictionary until
the length exceeds a given threshold. We retry this
for all algorithms. The dictionary remains constant.
We obtained the following result.

input size
naive
(in
second)

naive+
(in
second)

trie (in
second)

suffix
(in
second)

10 0.696 0.661 0.780 0.686

100 0.708 0.670 0.772 0.692

1,000 1.384 0.724 0.800 0.712

10,000 97.982 1.292 0.788 0.744

100,000 > 600 6.784 0.776 1.792

1,000,000 > 600 90.683 0.940 17.661

10,000,000 > 600 > 600 2.620 189.024

100,000,000 > 600 > 600 32.360 > 600

Performance Comparison of 4 algorithms. Data
with value 5 means the time required is > 600
seconds.

We only tried the naive implementation up to
10,000 (We tried 100,000, but it didn't terminate
after 10 minutes). Also, we tried the suffix tree only
until 10,000,000 because it requires a larger memory
than the trie solution.

From the experiment, we observe that all of the
implementations takes at least 0.6 seconds. We
hypotesized that this is because of the overhead
incurred when reading the large dictionary file.
Furthermore, the trie implementation has a
somewhat higher lowerbound, probably because it
requires preprocessing the dictionary's content for
any size of text.

We observe that the naive algorithm slows much
faster than the other two algorithm, which is in line
with the large asymptotic complexity of that
solution. However, we notice that even though it's
complexity is O(N^3 log N), it still works

sufficiently fast for N=10,000. We think this is
because most of the dynamic programming state will
be unreachable. For example, "cat", both DP[1] and
DP[2] will not be reachable because "c" and "ca"
are not proper words. This will also help the
performance of the two other algorithms.

The suffix tree algorithm is slower than the trie
algorithm. For the larger datasets, it's slower by a
magnitude. We conclude that this is inline with what
we expect since suffix tree construction and suffix
tree representation incurs large overhead.
Furthermore it requires N * alphabet_size memory
(where N is the size of text) as opposed to trie which
requires M * alphabet_size memory (where M is
the total size of the dictionary). However, we note
that the time required for the suffix tree algorithm to
increase almost linearly with the size of the text for
larger tests.

Surprisingly, trie also achieves this almost linear
increase. We hypotesize that this is because the
upperbound for trie is rarely achieved.

4. CONCLUSION
Word separation problem can be solved with all
three algorithms: naive, suffix tree, and trie. Trie
achieves best performance if the string consists of
random English words. The overhead incurred when
using suffix tree is high and limits its usefulness for
this problem.

The naive algorithm has a special property that
the other algorithms don't, its complexity does not
depends on the assumption that the alphabet is finite.
However, even though the other algorithms depends
on this assumption, when this assumption is removed
their complexity are only increased by a factor of
log(N) or log(M). Hence, they are still faster than the
O(N^3 log N) complexity of the naive solution.

The suffix tree algorithm, although theoretically
interesting, is slow because suffix tree is slow.
Furthermore it requires a large memory which
depends directly on the size of the input string. This
is contrast with the trie solution which requires large
memory which depends directly on the size of the
dictionary.

Although the trie solution has a somewhat higher
complexity than the suffix tree algorithm, if the
length of the longest word in a dictionary is constant,
it's actually a linear time algorithm. Hence, if the
overhead in the suffix tree algorithm proves too
large, the trie algorithm will still work great even for
large data.

5. REFERENCES
[1] Gusfield, Dan. Algorithms on Strings, Trees, and
Sequences. 1997

5



[2] Ukkonen E. On-line Construction of Suffix
Trees. Algorithmica - 1995. Springer
[3] http://www.mieliestronk.com/wordlist.html
[4] http://en.wikipedia.org/wiki/
Longest_word_in_English

The undersigned hereby declares that this work is a true work of Irvan Jahja and is not a copy or translated version
of the work of another party. All parties whose work was referenced are mentioned in the writing.

Irvan Jahja

6

http://www.mieliestronk.com/wordlist.html
http://en.wikipedia.org/wiki/Longest_word_in_English
http://en.wikipedia.org/wiki/Longest_word_in_English

	Abstraction
	Introduction
	String
	Problem and Assumptions
	Trie
	Suffix Tree

	Solutions
	The Dynamic Programming, Naive (O(N^3 log M))
	Using Trie: O(N*k + M)
	Using Suffix Tree: Average O(N + M)

	Performance Comparison
	Conclusion
	References

