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Abstract—Recommender systems are increasingly 

becoming a staple of websites that track user preferences and 

habits. These systems generally filter vast amounts of user 

profile information in a process called collaborative filtering 

to generate a list of recommended items a guest or user may 

be interested in, given knowledge of the user’s past taste and 

preferences. An extension to this concept is the possibility of 

calculating a user’s diversity of taste, which can serve as 

valuable information in the actual recommending process. In 

this paper I will outline the design for a Breadth-First 

algorithm to calculate a user’s diversity in taste, given a 

sizable amount of information regarding the user’s previous 

habits and the existence of a statistically large database of 

users, similarly with their item preference history available. 
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I.   INTRODUCTION 

 

With the advent and tremendous growth of the Internet 

in the mid-90s, people are now connected in ways never 

previously thought imaginable. Online, people from two 

opposite corners of the world can exchange information 

freely, demolishing geographical and spatial borders that 

have hindered information sharing since the beginning of 

human existence.  

This feat is due in large part to the boom in 

communication and network technology achieved 

throughout the 70s and 80s, focused primarily in the 

United States and Europe. Today, the growth of the 

Internet is attributed primarily to the newer economical 

giants such as China, Korea, Vietnam, and Indonesia. The 

Internet will surely face unprecedented growth well into 

the 21
st
 century. 

The rise of The Internet brought along with it the 

advent of many new ways to conduct everyday activities. 

Most prominent among these is the advent of e-shopping, 

still somewhat underutilized in Indonesia and other third-

world countries, e-banking, entertainment, in the form of 

online games, file sharing, etc., and recently, the 

phenomena of social networking. 

Obscured somewhat by the well-documented recent 

boom in networking and communications, the rapid 

advancements of data storage and processing power, 

mainly in its cost/performance ratio, continues 

unhindered. Coupled with the growth of the Internet and 

the recent rise in social networking, web entrepreneurs 

have invented and put into practice a plethora of systems 

to increase customer and user satisfaction, fulfilling needs 

people never even knew they had before. 

One of the better-known systems made possible by the 

increasingly large number of online users and cheap 

storage are recommendation systems, which are becoming 

increasingly common in anything from online shops to 

media information database websites. Particularly 

prominent examples of such recommender systems are the 

―Users who bought this item also bought…‖ lists on 

Amazon and other online shopping stores, music 

recommendation websites such as Last.fm, movie 

database IMDB (Internet Movie Database), and 

Facebook‘s ―You may also know…‖ lists. 

 

II. THEORY 

 

A recommender system is a specific information 

filtering system that attempts to recommend information 

items (products, media, etc.) that the user may be 

interested in. These systems usually work by comparing a 

user‘s profile to a reference trait, recommending items the 

user previously had not considered or had knowledge of. 

 

A. Content-Based Recommender 

 

Recommender systems generally belong to one of two 

classes; the content-based approach and the collaborative 

filtering approach. The content-based approach seeks to 

recommend items based on their ‗content‘ traits. Items the 

host provides are categorized based on these particular 

content traits, and a check is conducted against these traits 

to make a recommendation. For example, a company 

renting DVDs must keep and store users‘ previous rentals 

lists in a special database. If one such user is known to 

have rented titles such as Pride and Prejudice, Sense and 

Sensibility, and Elizabeth, which have been categorized as 

Period Drama and Romance, then said user may also be 

interested in Becoming Jane, another title with the tags 

Period Drama and Romance. The system will make the 

recommendation the next time the user comes around to 

make a rental or purchase. 

This approach excels in its ease of implementation. 
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Such a system requires the addition of tags –item 

descriptors of varying length—and a complete database of 

all items and tags. The shortcoming of this approach is 

that it requires the provider to be aware of the contents of 

items beforehand, which in the case of a store supplying 

thousands or hundreds of thousands of titles may be 

difficult. The accuracy of this approach is also limited by 

the specifity of the tags attached. For instance, the Drama 

tag may include hundreds of titles with not much in 

common. Vice versa, a tag such as Cat Warrior may 

contain one or even no titles. 

 

B. Collaborative Filtering Recommender 

 

The other commonly used approach is collaborative 

filtering. This approach makes predictions through the 

filtering of vast amounts of user taste and preferences 

information. Again, there are two methods of 

collaborative filtering. The first type is based on the 

premise of a rating system, where items are rated by user 

on a particular scale. This method proceeds as follows: 

1. Look for users who share the same rating patterns 

with the active user (for whom the 

recommendation is made). 

2. Use the ratings from these like-minded users to 

calculate a prediction for the active user. 

This method of collaborative filtering is called user-

based collaborative filtering, an example of which is the 

Nearest Neighbour Algorithm.  

However, this method proves inappropriate when 

dealing with items that are highly subject to user taste and 

preference, such as books, movies, restaurants, and music. 

Therefore, a fundamentally different approach is required 

to address these types of items.  

The type of collaborative filtering we are interested in 

in the scope of this paper follows these steps: 

1. Build an item-tem matrix determining the 

relationship between pairs of items. 

2. Infer user taste using this matrix and data regarding 

user taste. 

Amazon‘s ―User that brought this item also brought…‖ 

list is an example of a collaborative filtering recommender 

that utilizes these steps. Another example is the Last.fm 

music recommendation system. To better understand the 

process involved, let us use Last.fm‘s music recommender 

system as a case study.  

When guests register as Last,fm users, they are asked of 

their choice media player. Users then download a plugin 

which attaches itself to the user‘s media player, collects 

listening data and uploads it to Last.fm servers in a 

process called ―scrobbling‖. The uploaded data is derived 

from the metadata contained in the listener‘s media file, 

typically an IDv3 or IDv2 tag for MP3 files. Last.fm 

corroborates this data and displays it on the user‘s profile. 

Although it is now possible to obtain ―personalized‖ 

recommendations, Last.fm‘s music recommender was 

traditionally situated on the Artist/Musician page, where it 

is displayed in a list of Similar Artists, and can be thought 

of as a ―Fans of this band also listen to…‖ list. For 

example, the similar artist list for The Beatles is John 

Lennon, Paul McCartney, George Harrison, Ringo Starr, 

Paul McCartney & Wings, Wings, and Paul & Linda 

McCartney. It is understandable that the solo projects of a 

famous band almost always appear in similar artists, as the 

listeners of these solo projects are almost exclusively a 

subset of the listeners of the main band. 

Personalized recommendations, on the other hand, take 

the active user‘s listening history list in descending order, 

generate the similar artist list for each artist, and checks 

for overlaps. The artist with the most overlaps is placed at 

the top of the personalized recommendation list, the artist 

with the second most in second place, and so on and so 

forth. For instance, a user has Radiohead, Muse, Frederick 

Chopin, and The Beatles as his/her top listened to artist. 

Last.fm generates the similar artists for Radiohead, Muse, 

Frederick Chopin, and The Beatles, and counts how many 

times a particular similar artist is generated. The higher 

the count, the higher the similar artist is placed in the 

recommendations list generated. Last.fm usually considers 

the 50 top artists/bands in a user‘s listening history. Time 

period can also be considered, to account for changes in 

taste; Last.fm may use the 50 top artists over the last 3 

months to generate the list. As a note, this method is 

generally applicable to any collaborative filtering method 

employing a ―similar item‖ technique. Amazon‘s 

personalized recommender system and Facebook‘s friend 

recommender lists, for example, can be thought of as 

belonging to this category. This paper will henceforth use 

this model when referring to recommender systems. 

As we are not concerned with the details of the 

collaborative filter function itself, we will only describe 

those functions and sets required to generate the taste 

diversity gauge. 

 

The user domain is the set of items highly ranked or at 

the top of a user‘s history list. 

The similarity function fs(x) generates a set of results 

through the collaborative filtering method described 

above of an item x. It produces a set {y1,y2,...,yn} of 

similar results. 

The similarity counter function utilizes the similarity 

function on a set of items and counts the number of exact 

matches in each resultant set. 

Finally, the recommender function arranges the 

resultant set of the similarity counter function in 

descending order and takes the first m occurrences, where 

m is an arbitrary integer larger than 0. 

 

C. The Breadth First Search Algorithm (BFS) 

 

The breadth first search algorithm (henceforth referred 

to as BFS) is a graph-traversal algorithm to systematically 

traverse the nodes of a graph. The BFS algorithm derives 

its name from the fact that it traverses graphs ‗sideways‘; 
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it first visits the root node, after which it visits a node v 

which is its child and is situated leftmost in a tree 

diagram. After this it visits its siblings –nodes situated to 

its right in a tree diagram—after which it visits its child 

nodes, so on and so forth until it has visited all the nodes 

in the tree diagram. 

 

 
 

Diagram 1: Node traversal in BFS 

 

This diagram shows the order in which nodes are 

transversed in a BFS algorithm, 1 being the root node and 

beginning of the algorithm. 

For a data structure that builds nodes dynamically, as 

we will be using, the algorithm can be represented as a 

function that executes a function and enqueues the results 

into a queue, executing the function with the result at the 

head of the queue as a parameter while end conditions are 

not met. 

 

III.   APPLICATION OF ALGORITHM 

The following section will outline the design for a BFS 

algorithm that calculates the diversity of a user‘s tastes 

and preferences given a collaborative filtering 

environment.  

 

A. Basic Concept 

By generating the list of m similar items for the top n 

items in a user‘s profile, and subsequently counting the 

number of unique items in the list, we can gauge the 

diversity of the user‘s taste. The upper limit to this count 

is m x n. Calculating this value is a relatively trivial task, 

and is limited mostly by the site‘s (or database‘s) network 

bandwidth. 

For a small n or a small m however, it is more difficult 

to obtain accurate results. These limits may realistically 

occur if the size of the collaborative filter‘s database is 

relatively small or if the amount of the active user‘s user 

preference data is small.  

A way to overcome this is by conducting a similar artist 

search on the results of the first, and returning the depth at 

which a non-unique similar artist is found. A maximum 

depth value must be passed at the beginning of the 

calculation, to ensure that the function does not loop ad 

infinitum. 

Utilizing the similarity function described in section 

II.B, we first determine the size of the domain set, the 

resultant set, and the maximum depth of the search. Other 

parameters may be added relevant to the specific 

recommender system involved, such as time period 

considered. 

 

B. Implementation 

 

The algorithm proceeds as follows: 

 

 

 

 

 

 
Diagram 2: Step 1 

 

The first step is to initialize the algorithm by executing 

a function fD(n, m, u) that sets the number of top items 

considered, the number of similar items to generate, and 

maximum search depth in n, m, and u, respectively. In this 

case, n = 3, m = 3, and u = 3. The three top items are 

immediately sent to the checking array, where we will 

conduct the checking to determine whether or not an item 

has been encountered before. 

 

 

 

 

 

 

 

 

 

 

 
Diagram 3: Step 2 

 

Next, we traverse to level 1 of the tree and execute the 

similarity function fS(x, m) for each node in the level, 

where x is the node name (item identifier) and m is the 

number of similar items to generate. In this case, x = 2 

and m = 3. Each of these nodes are immediately checked 

against the checking array with a function fC(x) where x is 

the node number, in this case 5, and returns a Boolean. If 

during checking the name of the item at node 5 is found to 

be unique, the node is enqueued and awaits processing. 

The same process is repeated for the other 3 nodes created 

1 

1 

2 3 4 

2 3 4 

5 6 7 
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during the same fS function. However, if the item name 

contained in node 5 is not unique, the loop terminates and 

the depth of the tree is returned, along with the item name. 

 

 

 

 

 

     

 

 

 

 

 
Diagram 4: Step 3 

 

When the last level 1 node has been traversed and its 

item name checked, we reach the end of the level. 

Subsequently, fS is executed with the object at the head of 

the queue as the parameter. In this case, x = 5, and the tree 

depth level variable is incremented. This process 

continues as long as no non-unique items have been found 

and the maximum tree depth has not been reached. As u = 

3 in this example, the process will stop once it finds a 

non-unique or when it has just enqueued node 49. 

If by the end of the process no non-unique items have 

been found, the user can be said to have a large diversity 

of taste relative to the size of the parameters used. If a 

match is found, then the depth of the tree at the solution 

will be compared to the size of parameters n and m to 

obtain a normalized value representing the user‘s taste 

diversity. The scale of the value obtained is arbitrary. 

With some careful analysis, certain knowledge of 

user‘s tastes and habits can be gleaned. For example, a 

solution found at level 1 suggests a very narrow 

preference range, whereas a solution involving a large n 

and m value at a large depth suggests a user with high 

taste diversity. However, at such small datasets, one 

should be careful not to make conclusive remarks 

regarding user tastes. 

 

 

IV. ANALYSIS 

 

The use of the BFS algorithm to produce accurate 

results in the above conditions is highly subject to the size 

of the parameters used. Unfortunately, physical testing 

was not conducted, and therefore further research is 

required to determine the upper and lower limits the 

parameters must satisfy in order to produce accurate 

results. 

Accurate results of taste diversity calculations highly 

depend on a large database of available user data. It can 

be shown that results become accurate only when the 

amount of data analyzed is in the thousands or tens of 

thousands of records. In the case of the above algorithm, 

we assume that the database used for the execution of the 

similarity function is suitably large, and hence results 

produced should be reasonably accurate. 

There are two methods mentioned in the algorithm, the 

first not involving the use of the BFS algorithm. However, 

for suitably large datasets the previous method is 

considerably lighter on the servers involved. Unless a 

future method is found to lighten the load on servers 

during node traversals of this type, it would be unfeasible 

to implement this algorithm on a commercial website. 

Finally, the application of taste diversity algorithms is 

still highly underrated. During the process of writing, the 

author has only managed to discover such algorithms on 

music recommendation websites, such as Last.fm. 

Diversity or ‗eclecticity‘ values are used mainly as a 

means of showing musical randomness and as a point of 

pride. However, careful analysis of such data should 

theoretically lead to telling information regarding a user‘s 

taste. For instance, application of such ‗taste‘ diversity 

algorithms on Facebook‘s ―you may also know…‖ lists 

may result in knowledge of the user‘s social circles; the 

amount of disconnected social circles he/she has, 

friending habits, etc. 

Ultimately, the purpose of taste diversity algorithms 

should be to make better recommendations for the users 

involved. For example, users who have high taste 

diversity may appreciate recommendation that do not 

appear to be similar to their top items, and would 

welcome such suggestions as they diversify their taste. 

 

V.   CONCLUSION 

The subject of collaborative filtering and recommender 

systems is one with huge potential in the future. 

Applications include online medical treatment, book and 

file sharing, and other subjects unimaginable at the 

moment.  

Similarly, the idea of calculating user taste diversity has 

many applications, and may be applied to certain subjects 

in novel ways. In conclusion, this algorithm is a small 

contribution on my part to the vast and growing methods 

of taste diversity calculation, and may, hopefully, be 

useful in the future. 
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