
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Breadth First Algorithm for Calculating Taste Diversity

Cil Hardianto Satriawan / 13508061

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

if18061@students.if.itb.ac.id

Abstract—Recommender systems are increasingly

becoming a staple of websites that track user preferences and

habits. These systems generally filter vast amounts of user

profile information in a process called collaborative filtering

to generate a list of recommended items a guest or user may

be interested in, given knowledge of the user’s past taste and

preferences. An extension to this concept is the possibility of

calculating a user’s diversity of taste, which can serve as

valuable information in the actual recommending process. In

this paper I will outline the design for a Breadth-First

algorithm to calculate a user’s diversity in taste, given a

sizable amount of information regarding the user’s previous

habits and the existence of a statistically large database of

users, similarly with their item preference history available.

Key Words— Recommender, Collaborative Filtering,

Breadth-First Search, Diversity

I. INTRODUCTION

With the advent and tremendous growth of the Internet

in the mid-90s, people are now connected in ways never

previously thought imaginable. Online, people from two

opposite corners of the world can exchange information

freely, demolishing geographical and spatial borders that

have hindered information sharing since the beginning of

human existence.

This feat is due in large part to the boom in

communication and network technology achieved

throughout the 70s and 80s, focused primarily in the

United States and Europe. Today, the growth of the

Internet is attributed primarily to the newer economical

giants such as China, Korea, Vietnam, and Indonesia. The

Internet will surely face unprecedented growth well into

the 21
st
 century.

The rise of The Internet brought along with it the

advent of many new ways to conduct everyday activities.

Most prominent among these is the advent of e-shopping,

still somewhat underutilized in Indonesia and other third-

world countries, e-banking, entertainment, in the form of

online games, file sharing, etc., and recently, the

phenomena of social networking.

Obscured somewhat by the well-documented recent

boom in networking and communications, the rapid

advancements of data storage and processing power,

mainly in its cost/performance ratio, continues

unhindered. Coupled with the growth of the Internet and

the recent rise in social networking, web entrepreneurs

have invented and put into practice a plethora of systems

to increase customer and user satisfaction, fulfilling needs

people never even knew they had before.

One of the better-known systems made possible by the

increasingly large number of online users and cheap

storage are recommendation systems, which are becoming

increasingly common in anything from online shops to

media information database websites. Particularly

prominent examples of such recommender systems are the

―Users who bought this item also bought…‖ lists on

Amazon and other online shopping stores, music

recommendation websites such as Last.fm, movie

database IMDB (Internet Movie Database), and

Facebook‘s ―You may also know…‖ lists.

II. THEORY

A recommender system is a specific information

filtering system that attempts to recommend information

items (products, media, etc.) that the user may be

interested in. These systems usually work by comparing a

user‘s profile to a reference trait, recommending items the

user previously had not considered or had knowledge of.

A. Content-Based Recommender

Recommender systems generally belong to one of two

classes; the content-based approach and the collaborative

filtering approach. The content-based approach seeks to

recommend items based on their ‗content‘ traits. Items the

host provides are categorized based on these particular

content traits, and a check is conducted against these traits

to make a recommendation. For example, a company

renting DVDs must keep and store users‘ previous rentals

lists in a special database. If one such user is known to

have rented titles such as Pride and Prejudice, Sense and

Sensibility, and Elizabeth, which have been categorized as

Period Drama and Romance, then said user may also be

interested in Becoming Jane, another title with the tags

Period Drama and Romance. The system will make the

recommendation the next time the user comes around to

make a rental or purchase.

This approach excels in its ease of implementation.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Such a system requires the addition of tags –item

descriptors of varying length—and a complete database of

all items and tags. The shortcoming of this approach is

that it requires the provider to be aware of the contents of

items beforehand, which in the case of a store supplying

thousands or hundreds of thousands of titles may be

difficult. The accuracy of this approach is also limited by

the specifity of the tags attached. For instance, the Drama

tag may include hundreds of titles with not much in

common. Vice versa, a tag such as Cat Warrior may

contain one or even no titles.

B. Collaborative Filtering Recommender

The other commonly used approach is collaborative

filtering. This approach makes predictions through the

filtering of vast amounts of user taste and preferences

information. Again, there are two methods of

collaborative filtering. The first type is based on the

premise of a rating system, where items are rated by user

on a particular scale. This method proceeds as follows:

1. Look for users who share the same rating patterns

with the active user (for whom the

recommendation is made).

2. Use the ratings from these like-minded users to

calculate a prediction for the active user.

This method of collaborative filtering is called user-

based collaborative filtering, an example of which is the

Nearest Neighbour Algorithm.

However, this method proves inappropriate when

dealing with items that are highly subject to user taste and

preference, such as books, movies, restaurants, and music.

Therefore, a fundamentally different approach is required

to address these types of items.

The type of collaborative filtering we are interested in

in the scope of this paper follows these steps:

1. Build an item-tem matrix determining the

relationship between pairs of items.

2. Infer user taste using this matrix and data regarding

user taste.

Amazon‘s ―User that brought this item also brought…‖

list is an example of a collaborative filtering recommender

that utilizes these steps. Another example is the Last.fm

music recommendation system. To better understand the

process involved, let us use Last.fm‘s music recommender

system as a case study.

When guests register as Last,fm users, they are asked of

their choice media player. Users then download a plugin

which attaches itself to the user‘s media player, collects

listening data and uploads it to Last.fm servers in a

process called ―scrobbling‖. The uploaded data is derived

from the metadata contained in the listener‘s media file,

typically an IDv3 or IDv2 tag for MP3 files. Last.fm

corroborates this data and displays it on the user‘s profile.

Although it is now possible to obtain ―personalized‖

recommendations, Last.fm‘s music recommender was

traditionally situated on the Artist/Musician page, where it

is displayed in a list of Similar Artists, and can be thought

of as a ―Fans of this band also listen to…‖ list. For

example, the similar artist list for The Beatles is John

Lennon, Paul McCartney, George Harrison, Ringo Starr,

Paul McCartney & Wings, Wings, and Paul & Linda

McCartney. It is understandable that the solo projects of a

famous band almost always appear in similar artists, as the

listeners of these solo projects are almost exclusively a

subset of the listeners of the main band.

Personalized recommendations, on the other hand, take

the active user‘s listening history list in descending order,

generate the similar artist list for each artist, and checks

for overlaps. The artist with the most overlaps is placed at

the top of the personalized recommendation list, the artist

with the second most in second place, and so on and so

forth. For instance, a user has Radiohead, Muse, Frederick

Chopin, and The Beatles as his/her top listened to artist.

Last.fm generates the similar artists for Radiohead, Muse,

Frederick Chopin, and The Beatles, and counts how many

times a particular similar artist is generated. The higher

the count, the higher the similar artist is placed in the

recommendations list generated. Last.fm usually considers

the 50 top artists/bands in a user‘s listening history. Time

period can also be considered, to account for changes in

taste; Last.fm may use the 50 top artists over the last 3

months to generate the list. As a note, this method is

generally applicable to any collaborative filtering method

employing a ―similar item‖ technique. Amazon‘s

personalized recommender system and Facebook‘s friend

recommender lists, for example, can be thought of as

belonging to this category. This paper will henceforth use

this model when referring to recommender systems.

As we are not concerned with the details of the

collaborative filter function itself, we will only describe

those functions and sets required to generate the taste

diversity gauge.

The user domain is the set of items highly ranked or at

the top of a user‘s history list.

The similarity function fs(x) generates a set of results

through the collaborative filtering method described

above of an item x. It produces a set {y1,y2,...,yn} of

similar results.

The similarity counter function utilizes the similarity

function on a set of items and counts the number of exact

matches in each resultant set.

Finally, the recommender function arranges the

resultant set of the similarity counter function in

descending order and takes the first m occurrences, where

m is an arbitrary integer larger than 0.

C. The Breadth First Search Algorithm (BFS)

The breadth first search algorithm (henceforth referred

to as BFS) is a graph-traversal algorithm to systematically

traverse the nodes of a graph. The BFS algorithm derives

its name from the fact that it traverses graphs ‗sideways‘;

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

it first visits the root node, after which it visits a node v

which is its child and is situated leftmost in a tree

diagram. After this it visits its siblings –nodes situated to

its right in a tree diagram—after which it visits its child

nodes, so on and so forth until it has visited all the nodes

in the tree diagram.

Diagram 1: Node traversal in BFS

This diagram shows the order in which nodes are

transversed in a BFS algorithm, 1 being the root node and

beginning of the algorithm.

For a data structure that builds nodes dynamically, as

we will be using, the algorithm can be represented as a

function that executes a function and enqueues the results

into a queue, executing the function with the result at the

head of the queue as a parameter while end conditions are

not met.

III. APPLICATION OF ALGORITHM

The following section will outline the design for a BFS

algorithm that calculates the diversity of a user‘s tastes

and preferences given a collaborative filtering

environment.

A. Basic Concept

By generating the list of m similar items for the top n

items in a user‘s profile, and subsequently counting the

number of unique items in the list, we can gauge the

diversity of the user‘s taste. The upper limit to this count

is m x n. Calculating this value is a relatively trivial task,

and is limited mostly by the site‘s (or database‘s) network

bandwidth.

For a small n or a small m however, it is more difficult

to obtain accurate results. These limits may realistically

occur if the size of the collaborative filter‘s database is

relatively small or if the amount of the active user‘s user

preference data is small.

A way to overcome this is by conducting a similar artist

search on the results of the first, and returning the depth at

which a non-unique similar artist is found. A maximum

depth value must be passed at the beginning of the

calculation, to ensure that the function does not loop ad

infinitum.

Utilizing the similarity function described in section

II.B, we first determine the size of the domain set, the

resultant set, and the maximum depth of the search. Other

parameters may be added relevant to the specific

recommender system involved, such as time period

considered.

B. Implementation

The algorithm proceeds as follows:

Diagram 2: Step 1

The first step is to initialize the algorithm by executing

a function fD(n, m, u) that sets the number of top items

considered, the number of similar items to generate, and

maximum search depth in n, m, and u, respectively. In this

case, n = 3, m = 3, and u = 3. The three top items are

immediately sent to the checking array, where we will

conduct the checking to determine whether or not an item

has been encountered before.

Diagram 3: Step 2

Next, we traverse to level 1 of the tree and execute the

similarity function fS(x, m) for each node in the level,

where x is the node name (item identifier) and m is the

number of similar items to generate. In this case, x = 2

and m = 3. Each of these nodes are immediately checked

against the checking array with a function fC(x) where x is

the node number, in this case 5, and returns a Boolean. If

during checking the name of the item at node 5 is found to

be unique, the node is enqueued and awaits processing.

The same process is repeated for the other 3 nodes created

1

1

2 3 4

2 3 4

5 6 7

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

during the same fS function. However, if the item name

contained in node 5 is not unique, the loop terminates and

the depth of the tree is returned, along with the item name.

Diagram 4: Step 3

When the last level 1 node has been traversed and its

item name checked, we reach the end of the level.

Subsequently, fS is executed with the object at the head of

the queue as the parameter. In this case, x = 5, and the tree

depth level variable is incremented. This process

continues as long as no non-unique items have been found

and the maximum tree depth has not been reached. As u =

3 in this example, the process will stop once it finds a

non-unique or when it has just enqueued node 49.

If by the end of the process no non-unique items have

been found, the user can be said to have a large diversity

of taste relative to the size of the parameters used. If a

match is found, then the depth of the tree at the solution

will be compared to the size of parameters n and m to

obtain a normalized value representing the user‘s taste

diversity. The scale of the value obtained is arbitrary.

With some careful analysis, certain knowledge of

user‘s tastes and habits can be gleaned. For example, a

solution found at level 1 suggests a very narrow

preference range, whereas a solution involving a large n

and m value at a large depth suggests a user with high

taste diversity. However, at such small datasets, one

should be careful not to make conclusive remarks

regarding user tastes.

IV. ANALYSIS

The use of the BFS algorithm to produce accurate

results in the above conditions is highly subject to the size

of the parameters used. Unfortunately, physical testing

was not conducted, and therefore further research is

required to determine the upper and lower limits the

parameters must satisfy in order to produce accurate

results.

Accurate results of taste diversity calculations highly

depend on a large database of available user data. It can

be shown that results become accurate only when the

amount of data analyzed is in the thousands or tens of

thousands of records. In the case of the above algorithm,

we assume that the database used for the execution of the

similarity function is suitably large, and hence results

produced should be reasonably accurate.

There are two methods mentioned in the algorithm, the

first not involving the use of the BFS algorithm. However,

for suitably large datasets the previous method is

considerably lighter on the servers involved. Unless a

future method is found to lighten the load on servers

during node traversals of this type, it would be unfeasible

to implement this algorithm on a commercial website.

Finally, the application of taste diversity algorithms is

still highly underrated. During the process of writing, the

author has only managed to discover such algorithms on

music recommendation websites, such as Last.fm.

Diversity or ‗eclecticity‘ values are used mainly as a

means of showing musical randomness and as a point of

pride. However, careful analysis of such data should

theoretically lead to telling information regarding a user‘s

taste. For instance, application of such ‗taste‘ diversity

algorithms on Facebook‘s ―you may also know…‖ lists

may result in knowledge of the user‘s social circles; the

amount of disconnected social circles he/she has,

friending habits, etc.

Ultimately, the purpose of taste diversity algorithms

should be to make better recommendations for the users

involved. For example, users who have high taste

diversity may appreciate recommendation that do not

appear to be similar to their top items, and would

welcome such suggestions as they diversify their taste.

V. CONCLUSION

The subject of collaborative filtering and recommender

systems is one with huge potential in the future.

Applications include online medical treatment, book and

file sharing, and other subjects unimaginable at the

moment.

Similarly, the idea of calculating user taste diversity has

many applications, and may be applied to certain subjects

in novel ways. In conclusion, this algorithm is a small

contribution on my part to the vast and growing methods

of taste diversity calculation, and may, hopefully, be

useful in the future.

VI. ACKNOWLEDGMENT

I would like to thank my mentor, Ir. Rinaldi Munir,

M.T., as it was due to his guidance and his textbook that

this paper was written and completed.

REFERENCES

[1] http://en.wikipedia.org/wiki/Breadth-first_search

accessed: 6 Dec 2010 19:13

[2] K. Bradley and B. Smith, Improving Recommendation

Diversity,Smart Media Institute

[3] http://en.wikipedia.org/wiki/Collaborative_filtering

accessed: 6 Dec 2010 20:08

[4] http://en.wikipedia.org/wiki/Recommender_systems

accessed: 6 Dec 2010 20:17

1

2 3 4

5 6 7

10 9 8

11 13 12

http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Collaborative_filtering

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 29 April 2010

ttd

Nama dan NIM

