
Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

View Frustum Culling with Octree

Raka Mahesa 13508074

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

if18074@itb.ac.id

Abstract—Many people are mesmerized by the beautiful

world of Pandora in the Avatar movie, yet few people realize

that such beauty is brought by the power 3D rendering. And

there are even fewer people who know that 3D rendering is a

very complicated matter that keeps evolving. Each day new

techniques are being tested to improve or optimize 3D

rendering. With this paper, the author tries to dive into the

dark, murky water of 3D rendering in order to find out how

to optimize 3D rendering. The search for the ultimate

rendering technique still goes on…

Index Terms—AABB, Culling, Divide and Conquer,

Octree, View Frustum, 3D.

I. INTRODUCTION

Fig. 1. Crysis, a game with a very realistic environment.

Currently, three dimensional (which we‟ll refer to 3D

from now on) applications are common things. We see it

in many aspects of our life, from a simple animation in

Microsoft Power Point, to an artist modeling a new car, a

two hours-long 3D movie, to a beautiful world rendered

in a 3D game that can viewed smoothly on high-end

computers. Yet, 3D rendering is still an evolving topic,

every day new researches and experiments are made to

push its boundary. So with this paper, I was hoping to

experiment on a technique for 3D rendering so I can

contribute to the ever-growing world of 3D rendering.

There are a lot of problem still being researched in the

world of 3D rendering such as how to render a dynamic

shadow, how to render objects with realistic lighting, etc.

However, I‟ll only write about rendering optimization in

this paper instead of including those other stuff, since it is

a fundamental aspect for optimizing the whole rendering

process, so all those effects like shadow and lighting can

be applied even on low-end machines. Even though

rendering optimization seems like a simple matter

already, it isn‟t, there are a lot of ways to optimize it, and

each optimization has a different way to do it. So instead,

in this paper I‟ll restrict myself to write about optimizing

3D rendering with view frustum culling.

Well, since people have been trying to optimize 3D

rendering from more than a decade ago, there are already

a few techniques on how one can optimize view frustum

culling. Most of those techniques are based on Divide and

Conquer, like Portal Rendering and Octree Rendering,

two most widely-used view frustum culling techniques.

This time, I‟ll write about how Octree Rendering can be

used for view frustum culling, and how to optimize the

octree itself.

II. FUNDAMENTAL THEORY

3D rendering is a process mainly done in the video

adapter instead of the processor, and we can‟t really mess

with how the video adapter renders as a programmer, so

how are we going to optimize it? Well, we‟re not going to

be optimizing the rendering process; instead, we‟ll be

optimizing what the video adapter will render. You see, if

we just tell the adapter to render every single piece of

object in our 3D world, it‟ll be a waste of time, since

there are some things that don‟t need to be rendered, like

some objects behind our point of view. To only renders

the objects in our view is the goal of view frustum

culling.

 Fig. 2. View frustum.

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

View frustum is like your field of vision, a region of

space in the world that will appear on the screen. Only

objects inside the frustum will be seen by you. So, ideally,

only objects inside this frustum should be passed to the

video adapter and rendered, since rendering objects that

wouldn‟t be seen is a waste of power. This is exactly what

view frustum culling does; it culls the objects outside the

view frustum, and the rest was passed to the video adapter

so it would only have visible objects to render.

Fig. 3. Octree.

So far we haven‟t touched the other subject, the octree.

Well, as the name suggest, octree is another variant of tree

structure, with every node has either eight children or no

children at all. However, when we‟re talking about the 3D

world, octree usually refers to a technique that recursively

partitions a space by subdividing it into eight equal

octants. Data structure of an octree can be seen on the

right side of Figure 2, while the left side features how a

space is being partitioned by an octree.

Each node of an octree is a cube area, which brings us

to our next problem, which is how to represents a cube in

3D space. There are a lot of methods for it, like listing all

the points that make a cube, or just save one of the

corners position and the cube size. All those methods are

all right, however, when we‟re dealing with culling, we

would also deal with a lot intersection test, so we‟d like to

keep that in mind when choosing our cube representation

method.

Fig. 4. Axis-Aligned Bounding Box.

Fortunately, since an octree is usually axis-aligned, we

do have a way to represents cube that matches the

requirement, which is Axis-Aligned Bounding Box

(would be abbreviated as AABB from this point on).

Axis-aligned means that the object is aligned with every

axis, not oriented in any way, while bounding box just

mean a box that is used as some kind of boundary. AABB

is a structure that has a minimum point and a maximum

point of a cube, which makes it easy to test whether it

intersects with another AABB or not.

To test whether an AABB intersects with another

AABB or no, we would check if it doesn‟t intersect with

another AABB instead. If an AABB, let‟s name it “A”

does not intersect with another AABB named “B”, it

would fulfill at least one of these requirements:

Minimum X of A > Maximum X of B

Minimum Y of A > Maximum Y of B

Minimum Z of A > Maximum Z of B

Maximum X of A < Minimum X of B

Maximum Y of A < Minimum Y of B

Maximum Z of A < Minimum Z of B

In turn, failing all these tests would mean that the

AABBs intersect with one another. Of course, these same

tests can easily be used to test whether a point is inside an

AABB or no.

III. IMPLEMENTATION

With all of the fundamental theories covered, it‟s time

to give view frustum culling a try. The easiest solution

would be to use brute force algorithm and test each object

in the 3D space, checking whether it is inside the view

frustum or not. Another solution is to use an octree to

quickly eliminate points that are far away from the view

frustum and search for nodes that intersect with it.

Fig. 5. View frustum culling.

Figure 5 is a planar representation of a view frustum

culling with octree. The two red lines represent the shape

of the view frustum, with the view point starting from the

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

red circle. All of the colored rectangles is culled and will

not be rendered, while the grey rectangles will be

rendered.

Note that for the sake of simplicity, I used a cube to

represents a view frustum instead of a real frustum so I

can easily check whether a node intersects with the

frustum or not using AABB intersection detection. Using

real frustum would means that the intersection detection

algorithm must be changed (frustum intersection test must

check intersection against all 6 planes of the frustum) but

it would not be much of a difference. Another thing to

keep in mind is that I used points for objects in 3D world,

while most 3D applications would have real 3D objects.

And again, there would not be much of a problem since

checking 3D objects would also use AABB intersection

test.

Octree is a divide and conquer algorithm, so it would

have two different algorithms for dividing and for

conquering. The dividing algorithm is the one used when

the tree is constructed from a list of points in the 3D

space, while the conquering algorithm is the one used in

view frustum culling. For the purpose of experiment, I‟ve

decided to separate the two algorithms and measure their

timing individually.

Fig. 6. Screenshot during the octree creation.

Constructing a tree is quite simple. We already have

the root node, which is the whole world, now we just need

to split it into 8 octants. After splitting into 8 octants, the

list of points inside the node should also be splitted

according to the space of the octants and inserted to the

corresponding octant. For each 8 octant, a new node will

be created as a child to the parent node. The process will

keep continuing until the number of the point inside the

node is low enough, or the size of the node is small

enough, or both. When the node creation process has

stopped, the octree would be constructed. Below is a table

and a chart containing the duration of the tree generation

process for different number of points

Table 1. Tree construction durations

with minimum points per node is 10.

Points in world Duration (s)

5.000 0,457

15.000 0,988

40.000 3,000

100.000 6,751

Fig. 7. Table 1 chart.

In this first test, I used a world with width, height and

depth of 1000 units and various amount of points. We can

see from the chart that the tree construction time increases

exponentially. I used 10 as the minimum amount of points

inside a node for it to stop creating children nodes. What

if I also limit the node by size, will it becomes faster?

Well, that‟s exactly what I did for my next test.

Table 2. Tree construction durations with minimum points

 per node is 10 and minimum size of 100.000 units.

Points in world Duration (s)

5.000 0,316

15.000 0,537

40.000 1,316

100.000 3,093

Fig. 8. Table 2 chart.

The second test has yielded its result; I created several

octree with minimum number of points of 10, like the last

test, and minimum size of nodes of 100.000. It‟s clear by

limiting the size of the node; the tree would be

constructed quicker because the depth of the tree is also

limited. However, less depth means less accuracy, which

in turns, would also means that when the octree is being

culled, more points has to be tested to know if they are in

0,0000

2,0000

4,0000

6,0000

8,0000

5.000 15.000 40.000 100.000

0,0000

1,0000

2,0000

3,0000

4,0000

5.000 15.000 40.000 100.000

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

the view frustum or not.

Fig 9. Time-decrease (in percentage) chart.

Another thing I observed is that the bigger the number

of points in the world, the decrease in duration is also

increasing (don‟t let the chart fool you, it„s a comparison

of new/old duration). Unfortunately the chart rebounds at

40.0000 points in the world, we don‟t know yet whether

this is truly a rebound, or just an anomaly.

There‟s also one more thing that I would like to

comment on, it‟s the amount of time needed to generate a

tree. A normal game level would consist of around 5.000

objects, including walls, floors, pillars, etc. Now, 3D

games are usually played at least at 35-40 frames per

seconds, which would means that each frame has around

0,025 seconds of processing time. From both test I had

run before, the amount of time needed to construct an

octree from a world with 5.000 points is at least 0,36

seconds, which would mean that octree is much more

suited to be generated once when the game level is

loaded. It would works fine for static objects, and most

games has more static objects than moving, dynamic

objects too. However, as games get more sophisticated,

the amount of moving objects in a level has also increased

due to physic engine being implemented in the game. So

another problem has arisen, how to create octree for

dynamic objects? We won‟t discuss this problem further

in this paper as it is not the purpose, though I can tell you

that one of the solutions for creating octree for dynamic

objects is to modify the tree instead of fully rebuilding it.

With octree generation done, it‟s time to move on to

the culling. View frustum culling with octree is even

simpler than its creation. Starting from the root, we check

a node whether it intersects with the view frustum or not,

if it does not intersect, we don‟t need to bother with its

children and stop there. However, if the node intersects,

its children would also be checked for intersection if it

has any children, though if he does not have any more

children, the points attached to the node will be copied to

the list of drawn points. These points will then be drawn

sequentially.

This time I would also compare the time against a brute

force culling, where we check every single point to cull it

instead of searching for nodes first. Another thing, to add

more resolution to the timer, I‟ve decided to run the

culling 10 times with the same view frustum because

sometimes it‟s so fast that the timer resulted in 0.

Table 3. Culling with vertex minimum 10

 with brute force and octree, size is 100 x 80 x 40

Points Octree Brute

5.000 0,0004 0,0123

15.000 0,0005 0,0468

40.000 0,0005 0,1452

100.000 0,0013 0,4209

 Fig 10. Table 3 chart.

As you can see, culling with octree wins by a landslide,

it‟s not even fair. Even at the lowest number of points,

culling with octree only takes 0.4 ms, while using brute

force takes 12.3 ms, which means using octree is 30 times

faster. Though it is interesting to see that between 15.000

and 40.000 number of points, brute force duration

decrease a lot, while using octree the duration remains the

same. Unfortunately, we cannot see how they would

compete when the number of points is in the area of

hundreds, since the duration would be measured in nano

seconds. However, we could take a different approach,

see my next test, it‟s pretty interesting.

Fig 11. Screenshot during view frustum culling.

Table 4. Culling with vertex minimum 10

 with brute force and octree, size is 700 x 800 x 580

Points Octree Brute

5.000 0,0177 0,0161

15.000 0,0492 0,0497

40.000 0,1339 0,1489

100.000 0,2936 0,3372

0,0000

20,0000

40,0000

60,0000

80,0000

5.000 15.000 40.000 100.000

0,0000

0,1000

0,2000

0,3000

0,4000

0,5000

Octree

Brute

Makalah IF3051 Strategi Algoritma – Sem. I Tahun 2010/2011

Fig 12. Table 4 chart.

Lo and behold, who would have thought that brute

force algorithm could almost fight off a divide and

conquer one like octree. As we can see in our fourth test,

there isn‟t much difference between the duration of octree

culling and brute force culling. The key here is the size of

the frustum; the region used for culling was big, 700 x

800 x 580, which would make it around 32.5% of the

whole world. For a big frustum (or a small world), using

octree doesn‟t give much advantage over using brute

force since they would need to manually check a lot of

points anyway.

Table 5. Culling with vertex minimum 10 and

With vertex minimum 10 + size minimum 10.000.000

Points Min points Min size

5.000 0,0003 0,0008

15.000 0,0005 0,0022

40.000 0,0006 0,0061

100.000 0,0014 0,015

Fig 13. Table 5 chart.

The last test on this paper, fortunately, this proves to be

an interesting one. Earlier, I‟ve been wondering if it‟s

good to limit octree to a certain minimum size, and this

test has proven that it‟s not such a good idea, as the

culling works a lot faster on the octree limited only by

point number per node. Though, I have a doubt that it‟s

probably because of the frustum, as limiting the octree

would make each cell bigger, thus making it more ideal

for handling bigger frustum.

Well, that should conclude my papers on view frustum

culling with octree.

IV. CONCLUSION

There are several conclusions we can get from a

number of tests I conducted:

1. The time it takes to construct an octree grows

exponentially as the number of objects in the 3D

space grows linearly.

2. Having more parameters to limit the creation of

children node helps makes the creation of octree

faster.

3. The creation of octree takes some time, making it

unsuitable to be created every frame.

4. When the frustum is small, culling with octree is

more than 30 times faster than using other.

5. When the frustum is big, there is no significant

difference when culling with octree and without.

REFERENCES

[1] http://en.wikipedia.org/wiki/Octree accessed on 8/12/2010.

[2] http://www.toymaker.info/Games/html/collisions.html accessed on

8/12/2010

[3] http://www.jaapsuter.com/1999/04/13/octree-forest/ accessed on

8/12/2010

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya

tulis ini adalah tulisan saya sendiri, bukan saduran, atau

terjemahan dari makalah orang lain, dan bukan plagiasi.

Bandung, 8 Desember 2010

Raka Mahesa 13508074

0

0,1

0,2

0,3

0,4

Octree

Brute

0

0,005

0,01

0,015

0,02

5.000 15.000 40.000 100.000

http://en.wikipedia.org/wiki/Octree
http://www.toymaker.info/Games/html/collisions.html
http://www.jaapsuter.com/1999/04/13/octree-forest/

