
OPTIMIZING ALGORITHM USING BREADTH FIRST SEARCH
MANNER

Shauma Hayyu Syakura

Program Studi Informatika

Sekolah Elektro dan Informatika
Institut Teknologi Bandung

Jl. Ganesha 10, Bandung
e-mail : if17025@students.if.itb.ac.id

ABSTRACT

Flood fill, also called seed fill, is an algo-
rithm that determines the area connected to a
given node in a multi-dimensional array. Many
problems have been solved using this algorithm,
one of the examples is the using of this algorithm
in the "bucket" fill tool of paint programs to
determine which parts of a bitmap to fill with
color, and in puzzle games such
as Minesweeper, Puyo Puyo, Lu-
mines, Samegame and Magical Drop for de-
termining which pieces are cleared. When
applied on an image to fill a particular bounded
area with color, it is also known as boundary fill.
In this paper, a more opti-mized, enhanced, and
memory preserving flood fill algorithm using
Breadth First Search (BFS) Algorithm will be
shown instead of using ordinary recursive flood
fill algorithm.

Keywords : node, flood fill, stack overflow, depth
first search, breadth first search

1. Prefaces

The flood fill algorithm takes three parameters: a
start node, a target color, and a replacement color.
The algorithm looks for all nodes in the array which
are connected to the start node by a path of the
target color, and changes them to the replacement
color. There are many ways in which the flood-fill
algorithm can be structured, but they all make use of
a queue or stack data structure, explicitly or
implicitly. One implicitly stack-based (recursive)
flood-fill imple-mentation (for a two-dimensional
array) goes as follows:

Flood-fill (node, target-color,
replacement-color):

1. If the color of node is not equal

to target-color, return.
2. Set the color of node to

replacement-color.
3. Perform Flood-fill (one step to the

west of node, target-color,
replacement-color).
Perform Flood-fill (one step to the
east of node, target-color,
replacement-color).
Perform Flood-fill (one step to the
north of node, target-color,
replacement-color).
Perform Flood-fill (one step to the
south of node, target-color,
replacement-color).

4. Return.

Figure 1. step by step of recursive flood fill

with 4 directions
Though easy to understand, the implementation of
the algorithm used above is impractical in languages
and environments where stack space is severely
constrained (e.g. Java applets), and in bitmap
coloring, stack memory in internal memories are
perserved, causing massages like “stack overflow”
often encountered.

2. Method

The depth first search is well geared towards
problems where we want to find any solution to the
problem (not necessarily the shortest path), or to
visit all of the nodes in the graph. A recent
TopCoder problem was a classic application of the
depth first search, the flood-fill. The flood-fill
operation will be familiar to anyone who has used a
graphic painting application. The concept is to fill a
bounded region with a single color, without leaking
outside the boundaries.

In Flood Fill Algorithm using Depth First Search
method, stack is used for it’s data structure. A stack
is one of the simplest data structures available.
There are four main operations on a stack:

 Push - Adds an element to the top of the
stack

 Pop - Removes the top element from the
stack

 Top - Returns the top element on the stack
 Empty - Tests if the stack is empty or not

This concept maps extremely well to a Depth First
search. The basic concept is to visit a node, then
push all of the nodes to be visited onto the stack. To
find the next node to visit we simply pop a node of
the stack, and then push all the nodes connected to
that one onto the stack as well and we continue
doing this until all nodes are visited. It is a key
property of the Depth First search that we not visit
the same node more than once, otherwise it is quite
possible that we will recurse infinitely. We do this
by marking the node as we visit it, then unmarking it
after we have finished our recursions. This action
allows us to visit all the paths that exist in a graph;
however for large graphs this is mostly infeasible so
we sometimes omit the marking the node as not
visited step to just find one valid path through the
graph (which is good enough most of the time).

So the basic structure will look something like this:
dfs(node start) {
 stack s;
 s.push(start);
 while (s.empty() == false) {
 top = s.top();
 s.pop();
 mark top as visited;

 check for termination condition

 add all of top's unvisited neighbors to
the stack.
 mark top as not visited;
 }
}

Alternatively we can define the function recursively
as follows:

dfs(node current) {

 mark current as visited;
 visit all of current's unvisited neighbors
by calling dfs(neighbor)
 mark current as not visited;
}

The problem we will be discussing is grafixMask, a
Division 1 500 point problem from SRM 211. This
problem essentially asks us to find the number of
discrete regions in a grid that has been filled in with
some values already. Dealing with grids as graphs is
a very powerful technique, and in this case makes
the problem quite easy.

We will define a graph where each node has 4
connections, one each to the node above, left, right
and below. However, we can represent these
connections implicitly within the grid, we need not
build out any new data structures. The structure we
will use to represent the grid in grafixMask is a two
dimensional array of booleans, where regions that
we have already determined to be filled in will be
set to true, and regions that are unfilled are set to
false.

To set up this array given the data from the problem
is very simple, and looks something like this:

bool fill[600][400];
initialize fills to false;

foreach rectangle in Rectangles
 set from (rectangle.left, rectangle.top)
to (rectangle.right, retangle.bottom) to
true

Now we have an initialized connectivity grid. When
we want to move from grid position (x, y) we can
either move up, down, left or right. When we want
to move up for example, we simply check the grid
position in (x, y-1) to see if it is true or false. If the
grid position is false, we can move there, if it is true,
we cannot.

Now we need to determine the area of each region
that is left. We don't want to count regions twice, or
pixels twice either, so what we will do is set
fill[x][y] to true when we visit the node at (x, y).
This will allow us to perform a Depth-First search to
visit all of the nodes in a connected region and never
visit any node twice, which is exactly what the
problem wants us to do! So our loop after setting
everything up will be:

int[] result;

for x = 0 to 599
 for y = 0 to 399
 if (fill[x][y] == false)
 result.addToBack(doFill(x,y));

All this code does is check if we have not already
filled in the position at (x, y) and then calls doFill()
to fill in that region. At this point we have a choice,

we can define doFill recursively (which is usually
the quickest and easiest way to do a depth first
search), or we can define it explicitly using the built
in stack classes. I will cover the recursive method
first, but we will soon see for this problem there are
some serious issues with the recursive method.

We will now define doFill to return the size of the
connected area and the start position of the area:

int doFill(int x, int y) {
// Check to ensure that we are within the
bounds of the grid, if not, return 0
 if (x < 0 || x >= 600) return 0;
// Similar check for y
 if (y < 0 || y >= 400) return 0;
// Check that we haven't already visited
this position, as we don't want to count it
twice
 if (fill[x][y]) return 0;

// Record that we have visited this node
 fill[x][y] = true;

 // Now we know that we have at least one
empty square, then we will recursively
attempt to
 // visit every node adjacent to this node,
and add those results together to return.
 return 1 + doFill(x - 1, y) + doFill(x + 1,
y) + doFill(x, y + 1) + doFill(x, y - 1);
}

This solution should work fine, however there is a
limitation due to the architecture of computer
programs. Unfortunately, the memory for the
implicit stack, which is what we are using for the
recursion above is more limited than the general
heap memory. In this instance, we will probably
overflow the maximum size of our stack due to the
way the recursion works, so we will next discuss the
explicit method of solving this problem.

Stack memory is used whenever you call a function;
the variables to the function are pushed onto the
stack by the compiler for you. When using a
recursive function, the variables keep getting pushed
on until the function returns. Also any variables the
compiler needs to save between function calls must
be pushed onto the stack as well. This makes it
somewhat difficult to predict if you will run into
stack difficulties. I recommend using the explicit
Depth First search for every situation you are at
least somewhat concerned about recursion depth.

In this problem we may recurse a maximum of 600
* 400 times (consider the empty grid initially, and
what the depth first search will do, it will first visit
0,0 then 1,0, then 2,0, then 3,0 ... until 599, 0. Then
it will go to 599, 1 then 598, 1, then 597, 1, etc. until
it reaches 599, 399. This will push 600 * 400 * 2
integers onto the stack in the best case, but
depending on what your compiler does it may in fact
be more information. Since an integer takes up 4
bytes we will be pushing 1,920,000 bytes of

memory onto the stack, which is a good sign we
may run into trouble.

We can use the same function definition, and the
structure of the function will be quite similar, just
we won't use any recursion any more:
class node { int x, y; }

int doFill(int x, int y) {
 int result = 0;

 // Declare our stack of nodes, and push our
starting node onto the stack
 stack s;
 s.push(node(x, y));

 while (s.empty() == false) {
 node top = s.top();
 s.pop();

// Check to ensure that we are within the
bounds of the grid, if not, continue
 if (top.x < 0 || top.x >= 600) continue;
// Similar check for y
 if (top.y < 0 || top.y >= 400) continue;
// Check that we haven't already visited
this position, as we don't want to count it
twice
 if (fill[top.x][top.y]) continue;

 fill[top.x][top.y] = true; // Record that
we have visited this node

 // We have found this node to be empty,
and part
 // of this connected area, so add 1 to the
result
 result++;

 // Now we know that we have at least one
empty square, then we will attempt to
 // visit every node adjacent to this node.
 s.push(node(top.x + 1, top.y));
 s.push(node(top.x - 1, top.y));
 s.push(node(top.x, top.y + 1));
 s.push(node(top.x, top.y - 1));
 }

 return result;
}

As you can see, this function has a bit more
overhead to manage the stack structure explicitly,
but the advantage is that we can use the entire
memory space available to our program and in this
case, it is necessary to use that much information.
However, the structure is quite similar and if you
compare the two implementations they are almost
exactly equivalent.

3. A More Optimized Flood Fill

Algorithm using Breadth First
Search

A queue is a simple extension of the stack data type.
Whereas the stack is a FILO (first-in last-out) data

structure the queue is a FIFO (first-in first-out) data
structure. What this means is the first thing that you
add to a queue will be the first thing that you get
when you perform a pop().

There are four main operations on a queue:

 Push - Adds an element to the back of the
queue

 Pop - Removes the front element from the
queue

 Front - Returns the front element on the
queue

 Empty - Tests if the queue is empty or not

In C++, this is done with the STL class queue:
#include
queue myQueue;
In Java, we unfortunately don't have a Queue class,
so we will approximate it with the LinkedList class.
The operations on a linked list map well to a queue
(and in fact, sometimes queues are implemented as
linked lists), so this will not be too difficult.

The operations map to the LinkedList class as
follows:

 Push - boolean LinkedList.add(Object
o)

 Pop - Object LinkedList.removeFirst()
 Front - Object LinkedList.getFirst()
 Empty - int LinkedList.size()

import java.util.*;
LinkedList myQueue = new LinkedList();
In C#, we use Queue class:

The operations map to the Queue class as follows:

 Push - void Queue.Enqueue(Object o)
 Pop - Object Queue.Dequeue()
 Front - Object Queue.Peek()
 Empty - int Queue.Count

The Breadth First search is an extremely useful
searching technique. It differs from the depth-first
search in that it uses a queue to perform the search,
so the order in which the nodes are visited is quite
different. It has the extremely useful property that if
all of the edges in a graph are unweighted (or the
same weight) then the first time a node is visited is
the shortest path to that node from the source node.
You can verify this by thinking about what using a
queue means to the search order. When we visit a
node and add all the neighbors into the queue, then
pop the next thing off of the queue, we will get the
neighbors of the first node as the first elements in
the queue. This comes about naturally from the
FIFO property of the queue and ends up being an
extremely useful property. One thing that we have to

be careful about in a Breadth First search is that we
do not want to visit the same node twice, or we will
lose the property that when a node is visited it is the
quickest path to that node from the source.

The basic structure of a breadth first search will look
this:
void bfs(node start) {
 queue s;
 s.push(start);
 while (s.empty() == false) {
 top = s.front();
 s.pop();
 mark top as visited;
check for termination condition (have we reached
the node we want to?) add all of top's unvisited
neighbors to the stack.
 }
}

Notice the similarities between this and a depth-first
search, we only differ in the data structure used and
we don't mark top as unvisited again. In
DepthFirstSearch (DFS), we explore a vertex's
neighbours recursively, meaning that we reach as
much depth as possible first, then go back and visit
othe rneighbours (and hence the name DepthFirst).
Another useful search algorithm is the BreadthFirst
Search (BFS). In BFS, we start with one vertex in a
visited set, the source vertex. Then, at each step, we
visit the entire layer of unvisited vertices reachable
by some vertex in the visited set, and add them to
the visited set. Doing so, BFS visits vertices in order
of their breadth, or simply the distance from that
vertex to the source. BFS builds its own
BreadthFirst tree, and is an iterative algorithm. A
simple problem that BFS is good at is the floodfill
problem, mentioned in the DFS section. A floodfill
simply fills all vertices reachable by some source
vertex with the same colour, much like the paint
bucket tool in imageediting programs. The idea is to
visit the vertices in a breadthfirst manner using BFS,
and colour each vertex as we reach it.

bool M[128][128]; // adjacency matrix (can
have at most 128 vertices)
bool seen[128]; // which vertices have been
visited
int n; // number of vertices
// ... Initialize M to be the adjacency
matrix
queue<int> q; // The BFS queue to represent
the visited set

int s = 0; // the source vertex
// BFS floodfill
for(int v = 0; v < n; v++) seen[v] =
false; // set all vertices to be "unvisited"
seen[s] = true;
DoColouring(s, some_color);
q.push(s);

while (!q.empty()) {
int u = q.front(); // get first

untouched
vertex
q.pop();
for(int v = 0; v < n; v++) if(

!seen[v] && M[u][v]) {
seen[v] = true;
DoColouring(v, some_color);
q.push(v);
}

}

Now, several things are going on in this example.
We use a queue to represent the visited set because a
queue will keep the vertices in order of when they
were first visited. This means the queue will keep
the vertices in a breadthfirst manner. We first start
off colouring the source vertex, marking it as seen,
and pushing it onto the queue. Now, for each vertex
in the queue, we simply do the same for all of its
neighbours – colour them, mark them as seen, and
push them onto the queue. Note that BFS is an
iterative algorithm, so we did not write it as a
function.

Figure 2. BFS Floodfill vs DFS Floodfill

Depth-first search, which is the natural algorithm,
uses far more auxiliary space than a breadth-first
search. I dare not try depth-first search by simple
recursion; the depth of recursion is limited only by

REDACTED, and experiments show that an
PROBLEM REDACTED could nevertheless require
a stack depth of over a million. So, put the stack in
an auxiliary data structure. Using an explicit stack
actually makes it easy to try breadth-first search as
well, and it turns out that breadth-first search can
use forty times less space than depth-first search.

4. Conclusion

The standard flood fill algorithm using DFS causing
problems in internal memory size. Huge data will
cause the stack to be overflowed. BFS method usage
in floodfill algorithm has been proven to be more
optimize, faster, and better in preserving internal
memory.

REFERENCE

[1]
http://www.topcoder.com/tc?module=Static&d1=tut
orials&d2=findSolution, 2-1-2010, 01.34 AM
[2]
http://stackoverflow.com/questions/1257117/does-
anyone-have-a-working-non-recursive-floodfill-
algorithm-written-in-c, 2-1-2010, 01.43 AM
[3]
http://www.cs.cornell.edu/~wdtseng/icpc/notes/grap
h_part1.pdf, 2-1-2010, 01.47 AM
[4]
http://www.topcoder.com/tc?module=Static&d1=tut
orials&d2=graphsDataStrucs2, 3-1-2010, 04.30 PM
[5] http://en.wikipedia.org/wiki/Flood_fill, 2-1-
2010, 01.32 AM

