
PAPER IF3051 ALGORITHM STRATEGY YEAR 2009

Combination of BFS and Brute Force Algorithm Implementation in Futoshiki

Puzzle Game

Hendy Sutanto - 13507011

Informatics Engineering

School of Electrical and Informatics Engineering

Institut Teknologi Bandung

Jalan Ganeca 10

e-mail: hendy_lau8@yahoo.com

ABSTRACT

Brute-force is straightforward algorithm to solve

problem in simple, to-the-point and obvious way.

BFS is a graph search algorithm that begins at the root

node and explores all neighboring nodes.

Futoshiki is one of the puzzle games originated from

Japan. Type of game is very similar to Sudoku. What

makes it special are the “greater than” and “less than”

signs among numbers.

This paper presents how to solve Futoshiki, one of

paper based puzzle games, could be solved with combi-

nation of those two algorithms.

We use brute force to scan all square in futoshiki

puzzle game, and BFS to update all possible numbers

which some other square trigger.

Keywords: Futoshiki, Brute force, BFS, combination.

1. INTRODUCTION

Game is one kind of entertainment, it can also be

challenging as well as to hone the player brain's ability.

There are various types of games such as console games,

board games, skill games, puzzle games, and others.

Lately, a lot of puzzle games that popular in

community, one of them is the type of paper-based puzzle

game. Paper-based puzzle game is a puzzle game can be

played just with paper and pencil. As an easy and

unboring game to play in recent years, the game Sudoku

has been booming in the market, triggering the emergence

of many other puzzle games that are not less interesting,

like Futoshiki.

Figure 1. Futoshiki Puzzle Game

2. ALGORITHMS

2.1 Breadth First Search Algorithm

In graph theory, breadth-first search (BFS) is a graph-

search algorithm that begins at the root node and explores

all neighboring nodes. Then, for each of those nearest

nodes, it explores their unexplored neighboring nodes, and

so on, until it finds the goal or stucked (no more

unexplored neighbours) without having found the goal.

It’s basic scheme:

a. Enqueue the root node.

b. Dequeue a node and examine it.

i. If the element sought is found in this node, quit

the search and return a result.

ii. Otherwise enqueue any successors (the direct

neighboring nodes) that have not yet been

discovered.

c. If the queue is empty, every node on the graph has

been examined – quit the search and return "not

found".

d. Repeat from Step b.

2.2 Brute Force Algorithm

Brute-force algorithm is one of a very simple algorithm,

but no less powerful than any other algorithms. Although

complexity is often relatively bigger than the others, it still

becomes the favorite of many programmers in problem

solving because it can solve all sorts of problems.

3. FUTOSHIKI

3.1 Introduction to Futoshiki

Futoshiki is one of the puzzle game originated from

Japan. This game is very similar to Sudoku. What makes

it special are the “greater than” and “less than” signs

among numbers.

PAPER IF3051 ALGORITHM STRATEGY YEAR 2009

3.2 Futoshiki Rules

The aim of Futoshiki is to place the numbers 1 to 5 (or

higher, if the puzzle is larger) into each row and column

of the puzzle so that no number is repeated in a row or

column and so that all of the inequality signs (< and >) are

obeyed.

In order to finish a Futoshiki puzzle game, we need to

know all possible numbers with respect to each square the

same line, same column, and the inequality signs.

Generally, we write down the possible numbers for each

square with pencil. Write possible numbers for each

square with following order:

1) Square around filled square

2) Square that corresponds inequality signs

3) Other Squares

If exists a square that has only one possible number,

then write down that number with pen (it means we

already believe that the number is correct). After that, we

remove that number from possible numbers from squares

sharing same row or column.

4. IMPLEMENTATION

In Futoshiki Puzzle Game, one could use some kind of

combinations from brute-force algorithm and BFS into the

following algorithm:

procedure BFScan(output S : Square)

VARIABLE
x : integer {axis of square)
y : integer {ordinat of square)
size : integer {size of futoshiki board}
Found : boolean

ALGORITHM
x = 1
y = 1
_S = Square
Found = false

repeat
 ScanSquare(_S,x,y)
 if (IsSingleNum(_S))
 Found <- true
 S <- _S
 else if (IsSingleCand(_S,_S2))
 Found <- true
 S <- _S2
 x <- x + 1
 if (x > size)
 y <- y + 1
 x <- 1
until ((y > size) or Found)

procedure BFS(input S : Square)

VARIABLE
x : integer {axis of square S)
y : integer {ordinat of square S)

i : integer {iterator for axis}
j : integer {iterator for ordinat}
Q : queue of Square

ALGORITHM
x = Axis(S)
y = Ordinate(S)
i = 0
j = 0

repeat
 ScanSquare(_S,x,j)
 j <- j + 1
 if (PN(_S) == Info(S))
 Enqueue(_S,Q)
 UpdatePN(_S)
until (j > size)

repeat
 ScanSquare(_S,i,y)
 i <- i + 1
 if (PN(_S) == Info(S))
 Enqueue(_S,Q)
 UpdatePN(_S)
until (i > size)

repeat
 Dequeue(_S2,Q)
 if (IsSingleNum(_S2))
 WriteNumber(_S2)
 BFS(_S2)
 else if (IsSingleCand(_S2,_S3))
 WriteNumber(_S3)
 BFS(_S3)
until (IsEmpty(Q))

MAIN

VARIABLE
FS : Square {filled square}
IS : Square {square that correspond inequality sign}
ES : Square {empty squares}

ALGORITHM
generate possible numbers around FS
generate possible numbers in IS
generate possible numbers in ES
while (game is not finish)
 BFScan(ChangedSquare)
 WriteNumber(_S)
 BFS (_S)
 UpdatePN in IS

4.1 Variable Explanation

a. FS = filled square

Filled square means square that is already filled as

the game begins.

b. IS = square that corresponds inequality sign

c. ES = empty squares

PAPER IF3051 ALGORITHM STRATEGY YEAR 2009

Figure 2. Variable Explanation

4.2 Function Explanation

a. IsSingleNum(S)

Boolean-returning function that checks if square S

has only one possible number.

b. IsSingleCand(S)

Boolean-returning function that checks if there

exist square having possible number that only

appear in the same row or column with S (single

candidate).

Figure 3. Function Explanation

c. IsEmpty(Q)

Boolean-returning function that checks if queue

Q is empty.

d. Axis(S)

Get the x-axis from square S.

e. Ordinate(S)

Get the y-axis from square S.

4.3 Procedure Explanation

a. BFScan(S)

Scans all squares using bruteforce algorithm,

sequentially scan every row and column to find

single possible number or single candidate.

b. BFS (S)

Using BFS algorithm, find all squares that have

been changed in same row or column with S, then

check if there exist square having single possible

number or single candidate triggered by S.

c. WriteNumber(S)

Writes number that we assuming is correct with

pen instead just writing possible numbers with

pencil.

d. UpdatePN(S)

 Updates possible numbers.

e. ScanSquare(S,x,y)

Scans square S in point (x,y)

f. Enqueue(S,Q)

Inserts square S into queue of square Q

g. Dequeue(S,Q)

Moves head of queue of square Q into S and

remove it from Q.

4.4 Example

a. generate possible numbers around S1

 Write down all possible number in squares around

filled square (up, right, down, left).

Figure 4. generate possible numbers around filled square

b. generate possible numbers in S2

Write down all possible numbers in squares that

correspond inequality sign. Smallest possible

number in “smaller” square should be not equal or

greater than smallest possible number in the

“bigger” square, as well as for the largest number.

Figure 5. generate possible numbers in square that

corresponds inequality sign

c. generate possible numbers in S3

Write all possible numbers in all remaining

squares.

FS

IS

ES

Single

number

Single candidate

in column

PAPER IF3051 ALGORITHM STRATEGY YEAR 2009

Figure 6. generate possible numbers in empty squares

d. while (game is not finish)

While not all the squares are filled with the correct

number, do something.

e. BFScan(ChangedSquare)

Scans all squares thoroughly, starting from first row

and first column sequentially to find single possible

number or single candidate, and then outputs it to

Changed-Square.

Figure 7. BFScan

f. WriteNumber(S)

Writes correct number in square S.

Figure 8. WriteNumber

g. BFS(_S)
First, we scan squares sharing same row or column

with square _S and check if its possible number

equals to the correct number that we wrote before.

If so, insert that square into Q then remove that

possible number.

Table 1. BFS(_S)

Square Queue

4

2

4

2
4

3

4

2
4

3

4

4

4

2
4

3

4

4

2

1

Next, we dequeue element in head of queue to check if it

has single possible number or single candidate. If so,
write that single possible number inside that square on

that square, and do BFS on it again. This procedure is

recursive.

Figure 9. WriteNumber

h. UpdatePN in S2

Updates possible number in square that

corresponds inequality sign.

PAPER IF3051 ALGORITHM STRATEGY YEAR 2009

Table 2. UpdatePN in S2

Status Square

Before updatePN

After updatePN

After all squares are filled correctly, the game is

finished:

Figure 10. Finished Futoshiki

5. CONCLUSION

We already saw that we could use combination of

brute force and BFS algorithm simultaneously in

explanation above. This method is good for any size of

futoshiki. As the size increases; the BFS algorithm will

generate more nodes in state tree.

With brute force algorithm, we could solve any

problems despite its large complexity. Also, we could try

every single possible solution using BFS.

Futoshiki can be solved using elimination method of

possible numbers in all squares. Starting with generating

all possible numbers at the beginning of the game,

updating them in the middle of game, and finally write it

if it has only single possible number.

REFERENCE

[1] http://www.puzzlemix.com/rules-

futoshiki.php?briefheader=1&JStoFront=1
Access time: December 30th, 2009 – 17:30

[2] http://www.puzzlemix.com/playgrid.php?id=5001&type

=futoshiki

 Access time: January 1st, 2010 – 1:39
[3] http://en.wikipedia.org/wiki/Breadth-first_search

 Access time: January 1st, 2010 – 2:00

[4] http://en.wikipedia.org/wiki/Brute-force_search

 Access time: January 1st, 2010 – 2:48
[5] Munir, Rinaldi, “Diktat Kuliah IF2251 Strategi

 Algoritmik”, Program Studi Teknik Informatika, ITB,

 2007.

http://www.puzzlemix.com/rules-futoshiki.php?briefheader=1&JStoFront=1
http://www.puzzlemix.com/rules-futoshiki.php?briefheader=1&JStoFront=1
http://www.puzzlemix.com/playgrid.php?id=5001&type
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Brute-force_search

