
IF3051 ALGORITHM STRATEGY PAPER 2009

THE APPLICATION OF DEPTH FIRST SEARCH AND BACKTRACKING IN

SOLVING MASTERMIND GAME

Halida Astatin (13507049)

Informatics

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Jalan Ganesa 10 Bandung

e-mail: halida.astatin@gmail.com

ABSTRACT

Mastermind is a two-player code-breaking game in

which one player acts as a code-maker, and the other

acts as code-breaker. The code-maker creates a

combination of four colors out of six possible colors,

and the code-breaker then has to guess the correct

color combination within given turns (usually 8-12

turns). The game ends when the code-breaker has

guessed the right color combination, or run out of

turns. This game is also often played with the

computer providing an AI (Artificial Intelligence) to

generate color combinations. There are many

strategies that can be used to guess the correct color

combination, and there are many algorithms that can

be applied in finding the right color combination.

Using the right strategy, and after several

adjustments, we can imply backtracking to solve the

game. Backtracking is a problem-solving method

which is derived from the Depth-First-Search (DFS)

algorithm. In finding a solution using backtracking,

once a node is proven to not lead to a solution, it will

be pruned and therefore the nodes positioned under

said node will not be checked. By doing this, the

number of possible solutions that has to be checked

can be decreased significantly.

Keywords: Mastermind, DFS, backtracking.

1. INTRODUCTION

Mastermind is a game invented in the 1970s by

Mordecai Meirowitz, but it resembles the game bulls and

cows, a pencil and paper game that may date back a

century or more. Throughout time, this game has been

modified into many different versions with different game

names. Aside from guessing color combinations, the

variation of mastermind includes word mastermind which

challenges the player to guess a four-letter word with 26

possible letters, number mastermind which uses numbers

instead of colors, and grand mastermind, which doesn‟t

only use colors but shapes as well.

Many algorithms can be applied in solving this game,

one of which is brute force. To find the right answer,

brute force algorithm will test each and every possible

answer to see if it is the solution. Using brute force, with

the assumption that there are six possible colors and four

colors in the combination, there would be 6
4
 possible

answers that need to be tested. This is highly inefficient,

therefore in this paper we will discuss the solution to

mastermind game using backtracking which supposedly

should solve the problem in a faster, more efficient way.

2. THE MASTERMIND GAME AND THE

BACKTRACKING ALGORITHM

Before we begin, we need to fully understand how to

play the game and what strategy to imply. Therefore in

this chapter, we will discuss further about the gameplay

and rules of mastermind game. Also in this chapter, we

will review the backtracking algorithm.

Figure 1 Mastermind Decoding Board, Code Pegs, and Key

Pegs

2.1. Mastermind Gameplay and Rules
Mastermind is played in a custom made board called

decoding board. This board has a shield at one end,

covering a row of four holes (this is used to put the right

color combination), and more or less twelve guessing

rows, depending on how many turns are given to the

IF3051 ALGORITHM STRATEGY PAPER 2009

code-breaker. Each row has four holes for the code pegs,

and four smaller holes for the key pegs. Code pegs are

pegs of six different colors with rounded heads which are

used to guess the color combination by putting them in

the holes on the board. Key pegs are flat-headed pegs,

some colored (often black), some white, sized smaller

than the code pegs. These key pegs will later be placed in

the smaller holes on the board, as the feedback from the

code-maker.

First of all, the code-maker chooses a combination of

four colors from six possible colors. Duplicates are

allowed, which means the combination may even be four

pegs of the same color. The chosen combination is placed

in the four holes covered by shield, which can be seen by

the code-maker but not by the code-breaker. When the

color combination has been chosen, the code-breaker can

start guessing the pattern, in order and color, within given

turns. Each guess is done by placing code pegs on the

decoding board. When the guess has been made, the code-

maker will then give feedback by placing zero to four key

pegs in the provided smaller holes. A colored key peg

indicates the existence of a code peg from the guess that is

correct in position and color. A white key peg, on the

other hand, is given for each color peg that is correct in

color, but is placed in the wrong position.

Once the code-maker has given feedback, the code-

breaker is allowed to make another guess. Guesses and

feedbacks will continue to take turns until either the

correct color combination is guessed, or the code-breaker

has run out of turns.

2.2. Backtracking Algorithm
There are several algorithms that are widely used to

find all or some solution to computational problems; two

of which are brute force and backtracking. Both

algorithms try to find solutions to a problem by gradually

making solution candidates. However, backtracking is

somewhat more efficient than brute force. How so? In

finding a solution using brute force algorithm, a program

will create every possible solution. For each solution, the

program will then check whether it fulfills the

specification of the requested final solution. Whereas the

backtracking algorithm will stop processing a solution

candidate once it is proven to not lead to the desired final

solution. For instance, given we have an 8-letter word,

and the program is requested to form a new word

consisting of two vocals and two consonants. Once the

program finds a third consonant during its search for

solution, then the current candidate and any solution

following it is automatically disposed, because it is not

likely to fulfill the specification of desired solution.

Nevertheless, backtracking algorithm can only be

applied to a certain type of problems. It can only works

for problems with solutions that can be searched

systematically and gradually. Backtracking can be applied

only to problems that admit the concept of “partial

candidate solutions” and can be tested relatively fast

whether or not it may lead to a valid solution. There are

problems that cannot be solved using backtracking, such

as finding a value within an unordered table. Nonetheless,

when it is applicable, backtracking can be a lot faster than

brute force because of the large number of solution

candidate it disposes in a single test.

Backtracking algorithm is based on the DFS (depth-first

search). The mechanism of backtracking uses the

principle of recursion. To solve the entire problem, a

solution to the first sub-problem is required. Afterwards,

this solution will be used to solve the following sub-

problems, recursively. When the current candidate fails,

or if it is required to find all of the possible solutions, then

the program will backtrack to the preceding node and test

the next possible solution. The backtracking process will

stop when there are no more possible solutions.

One very significant characteristic of backtracking

algorithm is its pruning function. Given the stages of

solution finding is represented in the form of tree, pruning

will be done to nodes that are not likely to form a valid

solution. Once a node has been pruned, its children will

automatically be left out of the process, because pruning a

node is equal to disposing the whole path following said

node.

Figure 2 Illustration of Pruning

According to the figure above, nodes d and f are

pruned. Consequently, node k, which is a child of node d,

also node l and m which are children of node f, will not be

processed.

Backtracking algorithm is widely used in the making of

computer games such as tic-tac-toe, maze, and chess. It is

usually used to build an artificial intelligence (A.I.) for the

games. Aside from that, this algorithm is also the most

efficient for parsing and many other combinatorial

problems. Backtracking is also used in the logic

programming language like Prolog, Planner, and Icon.

IF3051 ALGORITHM STRATEGY PAPER 2009

2.3. Mastermind Solving Strategy
In solving the mastermind game, before determining

what algorithm to apply, we need to define the states of

the game. Here we observe that, for every guess that is

made, there are 14 different feedbacks possible. We will

later refer to these feedbacks using these following

numbers :

[0] No key pegs

[1] 1 white key peg

[2] 1 colored key peg

[3] 2 white key pegs

[4] 1 colored key peg, 1 white key peg

[5] 2 colored key pegs

[6] 3 white key pegs

[7] 1 colored key peg, 2 white key pegs

[8] 2 colored key pegs, 1 white key peg

[9] 3 colored key pegs

[10] 4 white key pegs

[11] 1 colored key peg, 3 white key pegs

[12] 2 colored key pegs, 2 white key pegs

[13] 4 colored key pegs (SOLVED)

Note that the feedback consisting of 3 colored key pegs

and 1 white peg is not possible, because if there are

already three pegs in the correct position, then a fourth

peg with a correct color but placed in a wrong position is

not likely to exist. Later on, we will refer to the six

possible colors using the letter A to F. Now, to obtain a

feedback that can give us most useful information to

guess the correct color combination, what should be the

first guess? In choosing four color pegs, there are

6x6x6x6 = 1296 possible color combinations. But, for any

variation of colors and positions, there are only five

essentially different combination: AAAA, AAAB,

AABB, AABC, and ABCD. These are the five possible

moves that can be chosen as the first move. Whenever a

guess is made, the given feedback will reduce the number

of possible solution. For example, if the code-breaker

guessed „AAAA‟ and the feedback given was 0 (no key

pegs), that would mean that the color A is not in the

combination, thus making the number of possible color

combination reduced to only 5x5x5x5 = 625 color

combinations. Analysis shows that the number of possible

solutions left for each case is like so:

Table 1 Number of Solutions Left for Each First Guess x

First Mark Case

First
Mark

First Guess

AAAA AAAB AABB AABC ABCD

0 625 256 256 81 16

1 x 308 256 276 152

2 500 317 256 182 108

3 x 61 96 222 312

4 x 156 208 230 252

5 150 123 114 105 96

First
Mark

First Guess

AAAA AAAB AABB AABC ABCD

6 x x 16 44 136

7 x 27 36 84 132

8 x 24 32 40 48

9 20 20 20 20 20

10 x x 1 2 9

11 x x x 4 8

12 x 3 4 5 6

13 1 1 1 1 1

As we can conclude from the given table, the first guess

that can reduce most number of solution is AABB, with a

maximum solution left of 256. Therefore, strategically the

first move to make is always AABB.

3. APPLICATION OF BACKTRACKING

TO SOLVE MASTERMIND GAME

To create a solution to mastermind game using

backtracking, we will later on use these conventions:

- The six possible colors will be stored in an array of

colors [A..F]

- For every guesses made, feedbacks will be counted

as scores. Each colored peg will be valued 2 while

white pegs will be valued 1 each.

In order to be able to apply the backtracking algorithm

to solve Mastermind, we need to first adjust the condition

of the game. If we use an empty board as the start of the

backtracking process, which means that the root of the

solution tree is an empty board, the backtracking process

might be a little too complex. Therefore, as a first step, we

need to determine which color combination to use as the

start of the backtracking process. This is done by finding

the best valued first move, using the pattern AABB but

with every variation of color. Color combinations that are

marked with two white pegs (scored 2) will be regarded

as its inverse (for example AABB will be regarded as

BBAA), and considered marked with two colored pegs

(scored 4).

Once the root of the tree has been decided, the tree is

later expanded in two ways, by checking every possible

positions (for example, AABB will be expanded to

BABB, ABBB, AAAB, and AABA), then by trying every

possible color in one same position (AABB will be

expanded to BABB, CABB, DABB, EABB, and FABB).

Combination that has been checked will not be checked

twice. In expanding the tree, positions are changed from

the left, while colors are changed based on its order in the

array. Colors that are involved in guesses scored 0 will be

discarded from the array. Color combinations that gives

IF3051 ALGORITHM STRATEGY PAPER 2009

less score will automatically be pruned from the solution

tree.

As a sample case, let us review the process of finding a

solution if the code to find is FCBE. Based on the

backtracking algorithm, the process of solving the game is

as follows:

1. Determine the root of the tree

In this case, the scores for the possible first moves

are:

Table 2 Scores for Possible First Moves in Case FCBE

First Move Mark Score

AABB one colored peg 2

CCDD one colored peg 2

EEFF two white pegs 2

From the table we can see that every first moves

scores the same. But note that the last possible first

move, that is EEFF, is marked with two white pegs.

This means that we can regard the combination as

FFEE, marked with two colored pegs, with a score

of 4, making it the best valued first move.

2. Expand the root by position

From the selected root, we can start expanding it by

position. The first new node will be AFEE, which is

marked with a white peg and a colored peg, scored

3. This is proven to be lower than the previous node,

which means this node will be pruned. We move to

the next new node, FAEE, which is scored 4, or

equals to the current score. So we will continue to

expand this node, with an additional condition that

in the next stage, the score has to be higher than the

current score. The result of this stage is illustrated in

the following figure:

Figure 3 Solution Tree for Stage 1

3. Expand the node by color

From the selected node, we can start expanding it by

color. The first new node that is generated on this

stage would be FBEE. This node is marked with two

colored pegs scored 4, which does not fulfill the new

condition given. So we prune this node and move on

to the next node, which is FCEE. This node gets a

total score of 6 from three colored pegs. This is

greater than the current score, so this node will be

expanded. The next node will be expanded by

position, and the additional condition will not be

applied. The result of this stage is illustrated in the

following figure:

Figure 4 Solution Tree in Stage 2

4. Expand the node by position

From the node FCEE, we check every position. The

first node to be generated will be ACEE, which will

not get a score higher than or equal to the previous

score that has been obtained. The next node, FAEE,

faces the same problem. It is at the next node,

FCAE, that we find a node marked with three

colored pegs, scored 6 or equal to the current score.

This will be the node we take to expand on the next

stage. The current solution tree is as follows:

Figure 5 Solution Tree for Stage 3

5. Expand the root by color

In this stage, the additional condition that the score

has to be higher than the previous score is applied.

The current node, FCAE, will be expanded in which

the color in the third position will be changed with

every color. In this stage, the solution is found in the

first trial, that is FCBE. Because the solution is

found, the searching will be stopped, and the nodes

will not be expanded any further.

IF3051 ALGORITHM STRATEGY PAPER 2009

Figure 6 Final Solution Tree

4. CONCLUSION
The backtracking algorithm is commonly used to solve

problems that admits the concept of partial candidate

solutions. It is highly efficient when applied in the right

type of problem. With a few adjustments, this algorithm

can solve the mastermind game. However, the solution

using backtracking is not the best solution for this game.

There are still many cases in which the algorithm fails to

finish the game within given turn. The best solution so far

is the five-guess algorithm created by Donald Knuth, and

there is also a method by Kenji Koyama and Tony W. Lai

which can finish the game within an average of 4.34

turns, with a worst case of six turns.

REFERENCES

[1] Munir, Rinaldi, “Strategi Algoritmik”, Program Studi Teknik

Informatika, Sekolah Teknik Elektro dan Informatika, Institut

Teknologi Bandung, 2007, 125-149.

[2] http://en.wikipedia.org/wiki/Mastermind_(board_game)

(accessed December 29th, 2009, 10:40 PM)

[3] http://www.tnelson.demon.co.uk/mastermind/ (accessed

December 31st, 2009, 6:34 PM)

[4] http://en.wikipedia.org/wiki/Backtracking (accessed January

2nd, 2010, 1:24 AM)

[5] http://programmingpraxis.com/2009/11/20/master-mind-part

-2/ (accessed January 2nd, 2010, 2:31 AM)

