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ABSTRACT 
 
This paper was made to inform my research about 
implementation of dynamic programming algorithm. 
Discussion of this paper is emphasized on optimizing 
query for Database Management System.  
 
DBMS (Database Management System) is an 
application that use query to execute command (to 
access database), with SQL (Structured Query 
Language). 
  
Given a query, there are many plans that a database 
management system (DBMS) can follow to process it 
and produce its answer. All plans are equivalent in 
terms of their final output but vary in their cost, i.e., 
the amount of time that they need to run. What is the 
plan that needs the least amount of time? 
 
The cost difference between two alternatives can be 
enormous. For it is given five solution to execute an 
execution plan, each with their own running time, that 
varies from 0.32 seconds to more than a whole day. 
Subsequently, Such query optimization is absolutely 
necessary in a DBMS, to prevent the unwanted 
solution and select the right, efficient solution. 

 
With the implementation of dynamic programming 
algorithm, the query optimization can be done by 
filterng those plans and produce the most efficient plan 
to be executed. 
  
Keyword : dynamic programming, DBMS, query 
optimization. 

 
 
1.  INTRODUCTION 
 
Dynamic programming was first proposed as a query 
optimization search strategy in the context of System R by 
Selinger et al. Commercial systems have then used it in 
various forms and with various extensions. We present 
this algorithm pretty much in its original form, only 

ignoring details that do not arise in at SQL queries, which 
are our focus. 
 
2.  DYNAMIC PROGRAMMING 
ALGORITHM FOR QUERY 
OPTIMIZATION 
 

In this chapter, I will explain how dynamic 
programming could make all plans that are going to be 
executed by DBMS, efficient. But, I will first explain how 
queries are executed and query optimization for DBMS. 

 
2.1  Steps of query processing 
 

 
Figure 1. Query flow through DBMS 

 
The path that a query traverses through a DBMS until its 
answer is generated is shown in Figure 1. The system 
modules through which it moves have the following 
functionality: 

• The Query Parser checks the validity of the query 
and then translates it into an internal form, 
usually a relational calculus expression or 
something equivalent. 

• The Query Optimizer examines all algebraic 
expressions that are equivalent to the given query 
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and chooses the one that is estimated to be the 
cheapest. 

• The Code Generator or the Interpreter transforms 
the access plan generated by the optimizer into 
calls to the query processor. 

• The Query Processor actually executes the query. 
 

2.2  Steps of query optimisator 

 
Figure 2. Query optimizator architecture 

The path of query optimization is shown in Figure 2. Ech 
modules have the following functionality :   

• Rewriter: This module applies transformations to 
a given query and produces equivalent queries 
that are hopefully more effcient, e.g., 
replacement of views with their de_nition, 
attening out of 
nested queries, etc 
 

• Planner: This is the main module of the ordering 
stage. It examines all possible execution plans for 
each query produced in the previous stage and 
selects the overall cheapest one to be usedto 
generate the answer of the original query. 
 

• Algebraic Space: This module determines the 
action execution orders that are to be considered 
by the Planner for each query sent to it. 
 

• Method-Structure Space: This module determines 
the implementation choices that exist for the 
execution of each ordered series of actions 
specified by the Algebraic Space. 
 

• Cost Model: This module specifies the arithmetic 
formulas that are used to estimate the cost of 
execution plans. 
 

• Size-Distribution Estimator: This module 
specifies how the sizes (and possibly frequency 
distributions of attribute values) of database 
relations and indices as well as (sub)query results 
are estimated. 

 

All such series of actions produce the same query answer, 
but usually differ in performance. They are usually 
represented in relational algebra as formulas or in tree 
form. 
 
Planner employs a search strategy, which examines the 
space of execution plans in a particular fashion. This 
space is determined by two other modules of the 
optimizer, the Algebraic Space and the Method-Structure 
Space. For the most part, these two modules and the 
search strategy determine the cost, i.e., running time, of 
the optimizer itself, which should be as low as possible. 
The execution plans examined by the Planner are 
compared based on estimates of their cost so that the 
cheapest may be chosen. These costs are derived by the 
last two modules of the optimizer, the Cost Model and the 
Size-Distribution Estimator. 
 
2.3  Typical Space Restriction 
 
A flat SQL query corresponds to a select-project-join 
query in relational algebra. Typically, such an algebraic 
query is represented by a query tree whose leaves are 
database relations and non-leaf nodes are algebraic 
operators like selections (denoted by σ), projections 
(denoted by π), and joins (denoted by ∞). An intermediate 
node indicates the application of the corresponding 
operator on the relations generated by its children, the 
result of which is then sent further up. Thus, the edges of a 
tree represent data ow from bottom to top, i.e., from the 
leaves, which correspond to data in the database, to the 
root, which is the final operator producing the query 
answer 
 
Consider the following database schema, which will be 
used throughout this paper: 
emp(name,age,sal,dno) 
dept(dno,dname,oor,budget,mgr,ano) 
acnt(ano,type,balance,bno) 
bank(bno,bname,address) 
 
the schema above initiate and execute four tables (emp. 
dept, acnt and bank) consist of each own category (emp 
has four category, which is name, age, sal, dno). 
 
Figure 3 gives three examples of query trees for the query 
select name, floor 
from emp, dept 
where emp.dno=dept.dno and sal>100K . 
 
the query above select the name and floor category from 
emp and dept table. It also restrict the emp.dno to be 
identical with dept.dno and demand sal above 100 K. 
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For a complicated query, the number of all query trees 
may be enormous. To reduce the size of the space that the 
search strategy has to explore, DBMSs usually restrict the 
space in several ways. The first typical restriction deals 
with selections and projections: 
 
R1 : Selections and projections are processed on the fly 
and almost never generate intermediate relations. 
Selections are processed as relations are accessed for the 
first time.Projections are processed as the results of other 
operators are generated. 
 
In particular, the second typical restriction deals with 
cross products: 
 
R2 : Cross products are never formed, unless the query 
itself asks for them. Relations are combined always 
through joins in the query. 
 
In particular, the third typical restriction deals with the 
shape of join trees : 
 
R3 : The inner operand of each join is a database relation, 
never an intermediate result. 
 
Typical query optimizers make restrictions R1, R2, and 
R3 to reduce the size of the space they explore. 
 
 
 
 
 2.4 Applying Dynamic Programming 

Algorithm In Planner’s Search Strategy  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 examples of general query trees 

 
The algorithm is essentially a dynamically pruning, 
exhaustive search algorithm. It constructs all alternative 
join  trees  (that  satisfy  restrictions  R1-R3 ) by   iterating   
on  the number of relations joined so far, always pruning 
trees that are known to be suboptimal. Before we present 
the algorithm in detail, we need to discuss the issue of 
interesting order. One of the join methods that is usually 
specified by the Method-Structure Space module is merge 
scan. Merge scan first sorts the two input relations on the 
corresponding join attributes and then merges them with a 
synchronized scan. If any of the input relations, however, 
is already sorted on its join attribute (e.g., because of 
earlier use of a B+-tree index or sorting as part of an 
earlier merge-scan join), the sorting step can be skipped 
for the relation. Hence, given two partial plans during 
query optimization, one cannot compare them based on 
their cost only and prune the more expensive one; one has 
to also take into account the sorted order (if any) in which 
their result comes out. One of the plans may be more 
expensive but may generate its result sorted on an attribute 
that will save a sort in a subsequent merge-scan execution 
of a join. To take into account these possibilities, given a 
query, one defines its interesting orders to be orders of 
intermediate results on any relation attributes that 
participate in joins. (For more general SQL queries, 
attributes in order-by and group-by clauses give rise to 
interesting orders as well.) For example, in the query of , 
orders on the attributes emp.dno, dept.dno, dept.ano, 
acnt.ano, acnt.bno, and bank.bno are interesting. During 
optimization of this query, if any intermediate result 
comes out sorted on any of these attributes, then the 
partial plan that gave this result must be treated specially. 
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Using the above, we give below a detailed English 
description of the dynamic programming algorithm 
optimizing a query of N relations: 
 
Step 1 For each relation in the query, all possible ways to 
access it, i.e., via all existing indices and including the 
simple sequential scan, are obtained. (Accessing an index 
takes into account any query selection on the index key 
attribute.) These partial (single-relation) plans are 
partitioned into equivalence classes based on any 
interesting order in which they produce their result. An 
additional equivalence class is formed by the partial plans 
whose results are in no interesting order. Estimates of the 
costs of all plans are obtained from the Cost Model 
module, and the cheapest plan in each equivalence class is 
retained for further consideration. However, the cheapest 
plan of the no-order equivalence class is not retained if it 
is not cheaper than all other plans. 
 
Step 2 For each pair of relations joined in the query, all 
possible ways to evaluate their join using all relation 
access plans retained after Step 1 are obtained. 
Partitioning and pruning of these partial (two-relation) 
plans proceeds as above. 
 : : 
 
Step i For each set of i - 1 relations joined in the query, 
the cheapest plans to join them for each interesting order 
are known from the previous step. In this step, for each 
such set, all possible ways to join one more relation with it 
without creating a cross product are evaluated. For each 
set of i relations, all generated (partial) plans are 
partitioned and pruned as before. 
: : : 
 
Step N All possible plans to answer the query (the unique 
set of N relations joined in the query) are generated from 
the plans retained in the previous step. The cheapest plan 
is the final output of the optimizer, to be used to process 
the query. For a given query, the above algorithm is 
guaranteed to find the optimal plan among those satisfying 
restrictions R1-R3. It often avoids enumerating all plans in 
the space by being able to dynamically prune suboptimal 
parts of the space as partial plans are generated. In fact, 
although in general still exponential, there are query forms 
for which it only generates O(N3) plans.  
 
2.5  Case Study 
 
An example that shows dynamic programming in its full 
detail takes too much space. We illustrate its basic 
mechanism by showing how it would proceed on the 
simple query below: 
select name, mgr 
from emp, dept 

where emp.dno=dept.dno and sal>30K and oor=2 
 
Assume that there is a B+-tree index on emp.sal, a B+-tree 
index on emp.dno, and a hashing index on dept.oor. Also 
assume that the DBMS supports two join methods, nested 
loops and merge scan. (Both types of information should 
be specifed in the Method-Structure Space module.) Note 
that, based on the defnition, potential interesting orders 
are those on emp.dno and dept.dno, since these are the 
only join attributes in the query. The algorithm proceeds 
as follows:  
 
Step 1: All possible ways to access emp and dept are 
found. The only interesting order arises from accessing 
emp via the B+-tree on emp.dno, which generates the emp 
tuples sorted and ready for the join with dept. The entire 
set of alternatives, appropriately partitioned are shown in 
the table below. 
 

 
 
 Each partial plan is associated with some hypothetical 
cost; in reality, these costs are obtained from the Cost 
Model module. Within each equivalence class,  
 
only the cheapest plan is retained for the next step, as 
indicated by the boxes surrounding the corresponding 
costs in the table.  
 
Step 2: Since the query has two relations, this is the last 
step of the algorithm. All possible ways to join emp and 
dept are found, using both supported join methods and all 
partial plans for individual relation access retained from 
Step 1. For the nested loops method, which relation is 
inner and which is outer is also specifed. Since this is the 
last step of the algorithm, there is no issue of interesting 
orders. The entire set of alternatives is shown in the table 
below in a way similar to Step 1. Based on hypothetical 
costs for each of the plans, the optimizer produces as 
output the plan indicated by the box surrounding the 
corresponding cost in the table.  
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3. SUMMARY 
 
As the above example illustrates, the choices offered by 
the Method-Structure Space in addition to those of the 
Algebraic Space result in an extraordinary number of 
alternatives that the optimizer must search through. The 
memory requirements and running time of dynamic 
programming grow exponentially with query size (i.e., 
number of joins) in the worst case since all viable partial 
plans generated in each step must be stored to be used in 
the next one. In fact, many modern systems place a limit 
on the size of queries that can be submitted (usually 
around fifteen joins), because for larger queries the 
optimizer crashes due to its very high memory 
requirements. Nevertheless, most queries seen in practice 
involve less than ten joins, and the algorithm has proved 
to be very effective in such contexts. So, it is considered  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
successful in query optimizing search strategies for 
DBMS, thus optimize the query itself. 
 

 
 REFERENCE 
 
[1]    http://blogs.msdn.com/ericlippert/default.aspx accessed 17  

May 2008 18.45 
  [2] http://www.cs.nyu.edu/courses/spring06/queryopt.ppt 

accessed 17 Mei 2008 19.24  
[3]      http://www.cs.rutgers.edu/%7Emuthu/vishy.ppt accessed 

17 May 2008 22.09 
 
 
 

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008 
 
 

http://blogs.msdn.com/ericlippert/default.aspx
http://www.cs.nyu.edu/courses/spring06/queryopt.ppt
http://www.cs.rutgers.edu/%7Emuthu/vishy.ppt

	 
	ABSTRACT 
	 
	 
	1.  INTRODUCTION 
	2.  DYNAMIC PROGRAMMING ALGORITHM FOR QUERY OPTIMIZATION 
	2.1  Steps of query processing 


