
 QUERY OPTIMIZATION FOR DATABASE MANAGEMENT SYSTEM BY
APPLYING DYNAMIC PROGRAMMING ALGORITHM

Wisnu Adityo – NIM 13506029

 Information Technology Department Institut Teknologi Bandung

Jalan Ganesha 10
e-mail: if16029@students.if.itb.ac.id

ABSTRACT

This paper was made to inform my research about
implementation of dynamic programming algorithm.
Discussion of this paper is emphasized on optimizing
query for Database Management System.

DBMS (Database Management System) is an
application that use query to execute command (to
access database), with SQL (Structured Query
Language).

Given a query, there are many plans that a database
management system (DBMS) can follow to process it
and produce its answer. All plans are equivalent in
terms of their final output but vary in their cost, i.e.,
the amount of time that they need to run. What is the
plan that needs the least amount of time?

The cost difference between two alternatives can be
enormous. For it is given five solution to execute an
execution plan, each with their own running time, that
varies from 0.32 seconds to more than a whole day.
Subsequently, Such query optimization is absolutely
necessary in a DBMS, to prevent the unwanted
solution and select the right, efficient solution.

With the implementation of dynamic programming
algorithm, the query optimization can be done by
filterng those plans and produce the most efficient plan
to be executed.

Keyword : dynamic programming, DBMS, query
optimization.

1. INTRODUCTION

Dynamic programming was first proposed as a query
optimization search strategy in the context of System R by
Selinger et al. Commercial systems have then used it in
various forms and with various extensions. We present
this algorithm pretty much in its original form, only

ignoring details that do not arise in at SQL queries, which
are our focus.

2. DYNAMIC PROGRAMMING
ALGORITHM FOR QUERY
OPTIMIZATION

In this chapter, I will explain how dynamic
programming could make all plans that are going to be
executed by DBMS, efficient. But, I will first explain how
queries are executed and query optimization for DBMS.

2.1 Steps of query processing

Figure 1. Query flow through DBMS

The path that a query traverses through a DBMS until its
answer is generated is shown in Figure 1. The system
modules through which it moves have the following
functionality:

• The Query Parser checks the validity of the query
and then translates it into an internal form,
usually a relational calculus expression or
something equivalent.

• The Query Optimizer examines all algebraic
expressions that are equivalent to the given query

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008

and chooses the one that is estimated to be the
cheapest.

• The Code Generator or the Interpreter transforms
the access plan generated by the optimizer into
calls to the query processor.

• The Query Processor actually executes the query.

2.2 Steps of query optimisator

Figure 2. Query optimizator architecture

The path of query optimization is shown in Figure 2. Ech
modules have the following functionality :

• Rewriter: This module applies transformations to
a given query and produces equivalent queries
that are hopefully more effcient, e.g.,
replacement of views with their de_nition,
attening out of
nested queries, etc

• Planner: This is the main module of the ordering
stage. It examines all possible execution plans for
each query produced in the previous stage and
selects the overall cheapest one to be usedto
generate the answer of the original query.

• Algebraic Space: This module determines the
action execution orders that are to be considered
by the Planner for each query sent to it.

• Method-Structure Space: This module determines
the implementation choices that exist for the
execution of each ordered series of actions
specified by the Algebraic Space.

• Cost Model: This module specifies the arithmetic
formulas that are used to estimate the cost of
execution plans.

• Size-Distribution Estimator: This module
specifies how the sizes (and possibly frequency
distributions of attribute values) of database
relations and indices as well as (sub)query results
are estimated.

All such series of actions produce the same query answer,
but usually differ in performance. They are usually
represented in relational algebra as formulas or in tree
form.

Planner employs a search strategy, which examines the
space of execution plans in a particular fashion. This
space is determined by two other modules of the
optimizer, the Algebraic Space and the Method-Structure
Space. For the most part, these two modules and the
search strategy determine the cost, i.e., running time, of
the optimizer itself, which should be as low as possible.
The execution plans examined by the Planner are
compared based on estimates of their cost so that the
cheapest may be chosen. These costs are derived by the
last two modules of the optimizer, the Cost Model and the
Size-Distribution Estimator.

2.3 Typical Space Restriction

A flat SQL query corresponds to a select-project-join
query in relational algebra. Typically, such an algebraic
query is represented by a query tree whose leaves are
database relations and non-leaf nodes are algebraic
operators like selections (denoted by σ), projections
(denoted by π), and joins (denoted by ∞). An intermediate
node indicates the application of the corresponding
operator on the relations generated by its children, the
result of which is then sent further up. Thus, the edges of a
tree represent data ow from bottom to top, i.e., from the
leaves, which correspond to data in the database, to the
root, which is the final operator producing the query
answer

Consider the following database schema, which will be
used throughout this paper:
emp(name,age,sal,dno)
dept(dno,dname,oor,budget,mgr,ano)
acnt(ano,type,balance,bno)
bank(bno,bname,address)

the schema above initiate and execute four tables (emp.
dept, acnt and bank) consist of each own category (emp
has four category, which is name, age, sal, dno).

Figure 3 gives three examples of query trees for the query
select name, floor
from emp, dept
where emp.dno=dept.dno and sal>100K .

the query above select the name and floor category from
emp and dept table. It also restrict the emp.dno to be
identical with dept.dno and demand sal above 100 K.

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008

For a complicated query, the number of all query trees
may be enormous. To reduce the size of the space that the
search strategy has to explore, DBMSs usually restrict the
space in several ways. The first typical restriction deals
with selections and projections:

R1 : Selections and projections are processed on the fly
and almost never generate intermediate relations.
Selections are processed as relations are accessed for the
first time.Projections are processed as the results of other
operators are generated.

In particular, the second typical restriction deals with
cross products:

R2 : Cross products are never formed, unless the query
itself asks for them. Relations are combined always
through joins in the query.

In particular, the third typical restriction deals with the
shape of join trees :

R3 : The inner operand of each join is a database relation,
never an intermediate result.

Typical query optimizers make restrictions R1, R2, and
R3 to reduce the size of the space they explore.

 2.4 Applying Dynamic Programming

Algorithm In Planner’s Search Strategy

Figure 3 examples of general query trees

The algorithm is essentially a dynamically pruning,
exhaustive search algorithm. It constructs all alternative
join trees (that satisfy restrictions R1-R3) by iterating
on the number of relations joined so far, always pruning
trees that are known to be suboptimal. Before we present
the algorithm in detail, we need to discuss the issue of
interesting order. One of the join methods that is usually
specified by the Method-Structure Space module is merge
scan. Merge scan first sorts the two input relations on the
corresponding join attributes and then merges them with a
synchronized scan. If any of the input relations, however,
is already sorted on its join attribute (e.g., because of
earlier use of a B+-tree index or sorting as part of an
earlier merge-scan join), the sorting step can be skipped
for the relation. Hence, given two partial plans during
query optimization, one cannot compare them based on
their cost only and prune the more expensive one; one has
to also take into account the sorted order (if any) in which
their result comes out. One of the plans may be more
expensive but may generate its result sorted on an attribute
that will save a sort in a subsequent merge-scan execution
of a join. To take into account these possibilities, given a
query, one defines its interesting orders to be orders of
intermediate results on any relation attributes that
participate in joins. (For more general SQL queries,
attributes in order-by and group-by clauses give rise to
interesting orders as well.) For example, in the query of ,
orders on the attributes emp.dno, dept.dno, dept.ano,
acnt.ano, acnt.bno, and bank.bno are interesting. During
optimization of this query, if any intermediate result
comes out sorted on any of these attributes, then the
partial plan that gave this result must be treated specially.

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008

Using the above, we give below a detailed English
description of the dynamic programming algorithm
optimizing a query of N relations:

Step 1 For each relation in the query, all possible ways to
access it, i.e., via all existing indices and including the
simple sequential scan, are obtained. (Accessing an index
takes into account any query selection on the index key
attribute.) These partial (single-relation) plans are
partitioned into equivalence classes based on any
interesting order in which they produce their result. An
additional equivalence class is formed by the partial plans
whose results are in no interesting order. Estimates of the
costs of all plans are obtained from the Cost Model
module, and the cheapest plan in each equivalence class is
retained for further consideration. However, the cheapest
plan of the no-order equivalence class is not retained if it
is not cheaper than all other plans.

Step 2 For each pair of relations joined in the query, all
possible ways to evaluate their join using all relation
access plans retained after Step 1 are obtained.
Partitioning and pruning of these partial (two-relation)
plans proceeds as above.
 : :

Step i For each set of i - 1 relations joined in the query,
the cheapest plans to join them for each interesting order
are known from the previous step. In this step, for each
such set, all possible ways to join one more relation with it
without creating a cross product are evaluated. For each
set of i relations, all generated (partial) plans are
partitioned and pruned as before.
: : :

Step N All possible plans to answer the query (the unique
set of N relations joined in the query) are generated from
the plans retained in the previous step. The cheapest plan
is the final output of the optimizer, to be used to process
the query. For a given query, the above algorithm is
guaranteed to find the optimal plan among those satisfying
restrictions R1-R3. It often avoids enumerating all plans in
the space by being able to dynamically prune suboptimal
parts of the space as partial plans are generated. In fact,
although in general still exponential, there are query forms
for which it only generates O(N3) plans.

2.5 Case Study

An example that shows dynamic programming in its full
detail takes too much space. We illustrate its basic
mechanism by showing how it would proceed on the
simple query below:
select name, mgr
from emp, dept

where emp.dno=dept.dno and sal>30K and oor=2

Assume that there is a B+-tree index on emp.sal, a B+-tree
index on emp.dno, and a hashing index on dept.oor. Also
assume that the DBMS supports two join methods, nested
loops and merge scan. (Both types of information should
be specifed in the Method-Structure Space module.) Note
that, based on the defnition, potential interesting orders
are those on emp.dno and dept.dno, since these are the
only join attributes in the query. The algorithm proceeds
as follows:

Step 1: All possible ways to access emp and dept are
found. The only interesting order arises from accessing
emp via the B+-tree on emp.dno, which generates the emp
tuples sorted and ready for the join with dept. The entire
set of alternatives, appropriately partitioned are shown in
the table below.

 Each partial plan is associated with some hypothetical
cost; in reality, these costs are obtained from the Cost
Model module. Within each equivalence class,

only the cheapest plan is retained for the next step, as
indicated by the boxes surrounding the corresponding
costs in the table.

Step 2: Since the query has two relations, this is the last
step of the algorithm. All possible ways to join emp and
dept are found, using both supported join methods and all
partial plans for individual relation access retained from
Step 1. For the nested loops method, which relation is
inner and which is outer is also specifed. Since this is the
last step of the algorithm, there is no issue of interesting
orders. The entire set of alternatives is shown in the table
below in a way similar to Step 1. Based on hypothetical
costs for each of the plans, the optimizer produces as
output the plan indicated by the box surrounding the
corresponding cost in the table.

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008

3. SUMMARY

As the above example illustrates, the choices offered by
the Method-Structure Space in addition to those of the
Algebraic Space result in an extraordinary number of
alternatives that the optimizer must search through. The
memory requirements and running time of dynamic
programming grow exponentially with query size (i.e.,
number of joins) in the worst case since all viable partial
plans generated in each step must be stored to be used in
the next one. In fact, many modern systems place a limit
on the size of queries that can be submitted (usually
around fifteen joins), because for larger queries the
optimizer crashes due to its very high memory
requirements. Nevertheless, most queries seen in practice
involve less than ten joins, and the algorithm has proved
to be very effective in such contexts. So, it is considered

successful in query optimizing search strategies for
DBMS, thus optimize the query itself.

 REFERENCE

[1] http://blogs.msdn.com/ericlippert/default.aspx accessed 17

May 2008 18.45
 [2] http://www.cs.nyu.edu/courses/spring06/queryopt.ppt

accessed 17 Mei 2008 19.24
[3] http://www.cs.rutgers.edu/%7Emuthu/vishy.ppt accessed

17 May 2008 22.09

MAKALAH IF2251 STRATEGI ALGORITMIK TAHUN 2008

http://blogs.msdn.com/ericlippert/default.aspx
http://www.cs.nyu.edu/courses/spring06/queryopt.ppt
http://www.cs.rutgers.edu/%7Emuthu/vishy.ppt

	
	ABSTRACT
	
	
	1. INTRODUCTION
	2. DYNAMIC PROGRAMMING ALGORITHM FOR QUERY OPTIMIZATION
	2.1 Steps of query processing

