
 Heuristically Informed Search Methods for Solving Path-finding
Problem in Grid Square Environment and Its Optimization

Puja Pramudya

Program Studi Informatika
Sekolah Elektro dan Informatika

Institut Teknologi Bandung
Jl.Ganesha 10, Bandung

e-mail: if16058@students.if.itb.ac.id

ABSTRACT

Path-finding problem is a common problem we find
daily. There are some algorithms to solve such
problem. One of these is Heuristically Informed
Methods, which is a group of algorithm that using an
information to help the search. These methods consist
of algorithm that having different approach to get the
information about the search problem. They are Hill
Climbing, Beam Search, Best First Search, and Branch
and Bound. Some heuristic will explore different path
and determine the result and computation. This paper
shows these methods to solve path-finding problem in
grid environment, common heuristic in grid
environment and a creative way to optimize the search.
Experiment show that the optimized algorithm
perform better than standard algorithm.

Keywords : path finding, grid, search methods,
heuristic.

1. PREFACE

Search methods aren't the perfect solution for
every problem, but with creative applications it can solve
many. If search is an appropriate solution, then choose the
one which is guaranteed to find the solution. Furthermore,
pick the most efficient one.

There are various search methods we can use to
solve path-finding problem. Path-finding problem need us
to search a path or a way from the start point to the goal
point through some constraint may exist. This problem has
a widen application in the real life, such as routing,
shortest path, game and artificial intelligence and so on.

Each method has a different approach to solve
the problem. Then, it let us to divide the methods into two
kinds below:
1. Blind Search (Basic Search)
2. Heuristically Informed Methods

In this paper, square grid environment is choosen
to narrow the scope of exploration to solve path-finding

problem. Grids are built from a repetition of simple
shapes, take as square.Grids are commonly used in games
for representing playing areas such as maps (in games like
Civilization and Warcraft), playing surfaces (in games like
pool, table tennis, and poker), playing fields (in games
like baseball and football), boards (in games like Chess,
Monopoly, and Connect Four), and abstract spaces (in
games like Tetris).

Square grid is easy to implement and cover most
the pathfinding problem in a map. Each node in search
method is represent the coordinate of each square
altogether with the cost in the heuristically method.

Figure 1 Squre grid representation

This paper will show how each method can help
to find the path if one may exist and the different between
them. To simplify the representation, just organize the
possible solution into tree or graph structure. Searching
starts with visiting each node in a tree or graph until all
nodes has been looked or the solution is found. Then state
S as the start point and G is the goal.

2. BLIND SEARCH

Assume there is no information about the graph /
tree / network / road / or something alike being searched.
It can’t predict how many neighbors each node has until
the goal is reached. From starting node, S, can be searched
what neighbors it has (say A and B) but still lack

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

information about the number of neighbors A and B have
until they are reached.

Even not knowing things like that, DFS (Deep
First Search) and BFS (Breadth First Search) are
guaranteed to find a path if one exists.

BFS uses a data structure called a queue. Add the
newly formed paths to the back of the list. When
removing them to expand them, remove them from the
front. This is the brief algorithm for BFS to solve path-
finding problem:

Create a queue P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend the path one step to all neighbors

creating X new paths
Reject all paths with blocks
Add each remaining new path to the BACK of P

If G found -> success. Else -> failure.

BFS explores the tree uniformly checks all paths
one step away from the start, then two steps, then three,
and so on until the goal found or it comes failure.

DFS differs from BFS only in how the new paths
are added to the list. In this case, it uses a stack rather than
a queue. In a stack, new elements are added to the front of
the list rather than the back, but when the remove the
paths to expand them, still remove them from the front.
The result of this is that DFS explores one path, ignoring
alternatives, until it either finds the goal or it can’t go
anywhere else. This is the algorithm for DFS:

Create a stack P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend the path one step to all neighbors

creating X new paths
Reject all paths with block
Push each remaining new path to P

 If G found -> success. Else -> failure.

BFS and DFS are guaranteed to find a path to the
goal (if one exists) but not necessarily the most efficient
one. In this case, DFS gave the path, but one that had an
unnecessary detour through A and B.

So if both are guaranteed to reach the destination, pick
one that suit the problem. BFS is bad for those trees that
have a high branching factor, that mean that each node has
a lot of neighbors: use DFS for this. DFS is bad for those
trees that have a lot of very long paths: use BFS for this.

3. HEURISTICALLY INFORMED
METHODS

 DFS and BFS searches are all fine and good if
there isn’t anything even a little about the tree searching.
If it didn’t, knowing even a little bit, though, that

knowledge can help immensely. For one thing, if there is
some clue about branching factor and average distance of
the paths, it could be decided whether use BFS or DFS.

If it was provided more than that, for example,
distance to goal, it can be used that to greatly improve the
efficiency of search method and then it called the
heuristically informed method.

3.1 HEURISTICALLY BASIC SEARCH

Take an example is gird below:

Figure 2 Grid with distance to goal

The gray lines represent distance, but not actual paths.
Using these distance measurements and DFS, producing a
method called Hill Climbing. The algorithm for Hill
Climbing follows:

Create a stack P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend the path one step to all neighbors

creating X new paths
If any new paths exist

Sort them by their distances from the
last node to the goal

Reject all paths with blocks
Push each remaining new path to the FRONT of

P
If G found -> success. Else -> failure.

Look the italicized addition. This determines the
order nodes are added to the stack as in DFS. This method
will simulate the search such below:

Add S (distance of 20) to the stack and enter the
main loop. Remove S (20), expand it to S→A (15) and
S→D (10). Sort these so the shortest remaining path goes
first and add them to the stack. So, stack is now S→D (10)
and S→A (15).

Remove the first one, S→D (10), and expand it
to S→D→A (15), S→D→B (9) and S→D→E (8) and add
them (sorted) to the stack which now has the following:
S→D→E (8), S→D→B (9), S→D→A (15) and S→A
(15).

Expand S→D→E (8) to S→D→E→F (3) which
is still the shortest path so it then gets expanded to

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

S→D→E→F →G and reached the goal. Note that this
takes care of the problem brought up in the DFS
discussion. This does not mean that Hill Climbing solves
all the problems of DFS, it just happened to find a more
efficient path in this one example. In its worst-case
scenario, Hill Climbing behaves as DFS.

While the Hill Climbing Method improves the
efficiency of DFS, BFS has a potential improvement as
well, called Beam Search. Beam Search artificially limits
the branching factor of the tree to some arbitrary value
(for example, 2). This value is denoted W for width of the
beam. The algorithm for the problem follows:

Create a queue P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend ALL PATHS one step to all neighbors

creating X new paths
Reject all paths with blocks
Sort all paths by estimated distance to

goal
 Discard all but closest W paths

Push each remaining new path to the BACK of
P
If G found -> success. Else -> failure.

The effect of this, it limits the number of
neighbors that must be explored to only those that are
closest to the goal. The estimated remaining distance is, in
most cases the straight-line distance. However, because
the beam search discards potential paths which it never
examines again, it may be possible to discard paths which
prove more efficient later on or, in some worse cases,
discard the only paths to the goal

Hill Climbing and Beam search both have
inherent problems and unless special care is taken (and
sometimes its not practice to monitor the search and make
sure its working correctly) they may not find a path, even
if one exists. So, there must be a way to use heuristic
knowledge in some way to guarantee a path will be found.
The solution to this is Best First Search. This is the
algorithm for the current problem:

Create a list P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend ALL PATHS one step to all neighbors

creating X new paths
Reject all paths with blocks
Add each remaining new path to P
Sort entire list P by estimated distance to

goal
If G found -> success. Else -> failure.

This is guaranteed to find the path to the goal if
any path exists and is likely (though not guaranteed) to do
so efficiently. It may follow some unnecessary twists and
turns but is still more efficient than BFS or DFS in most

cases. In its worst-case scenario, however, it behaves just
like BFS.

3.2 OPTIMAL SEARCH

Blind searches will find ANY path. Heuristic
basic searches will usually find ANY path, but will do so
faster usually than blind search. Sometimes it's fine to find
just ANY path to the goal as long as reached there. But
sometimes the problem is to find the BEST path to the
goal. The fastest, cheapest, or easiest route to take is often
times more important than just finding SOME path. That’s
where optimal search comes in. The methods that follow
are intended to find the optimal path, and path-finding
problem now became the shortest path problem.

The first method is an exhaustive search. This
method is guaranteed to find the best path, but is often
quite inefficient. The method is simple and, at first glance,
logical: explore every possible path and return the shortest
one. One way to do this is to do BFS or DFS, but don’t
stop when the goal is reached. Continue until EVERY
node has been visited. During this, though, keep track of
the distances traveled on each path and return the shortest
one. This is practical for only small problems as this can
get quite computationally expensive very fast,and it isn’t
suit our scope because it doesn’t use any heuristic to help
find the goal.

However, this is not much different than blind
searches, so add a bit of heuristic tuning to improve
efficiency as been done before. By using it, always expand
shortest paths first (as in Best-First Search) and stop
exploring certain paths if it hasn’t reached the goal yet but
is still longer than an existing complete path. The end
result of this is called Branch and Bound search.

3.2.1 BRANCH AND BOUND SEARCH

Branch and Bound (B&B) is implemented with
BFS scheme. To speed up the search, every node is given
a cost. Expanding process isn’t based on the sequenced
expand but the node which has the lowest cost among the
live node. The cost for node i give the estimated path cost
from node i to goal node.

Otherwise, this function is the lower bound for
the cost search for path-finding problem. This function is
used to limit the expanding node which is not led to the
goal node. For actual implementation, determine the
bound function is hard and difficult to use exactly. Then,
in practice we use an estimated, often called heuristic
function. The function is shown below :

f(x) = g(x) + h(x)
which are :
f(x) : total cost for node x
g(x) : cost to reach node x from start

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

h(x) : cost to reach goal node from node x

The heuristic function will influence B&B in
running-time, to choose the next expanding nodes. Each
function will act differently. Branch and Bound algorithm
for path-finding problem can be shown below:

Create a list P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend first path one step to all neighbors

creating X new paths
Reject all paths with blocks
Add each remaining new path to of P
Sort all paths by total distance travelled,

shortest first.
If G found -> success. Else -> failure.

Therefore, the search can be stop expanding
paths if the path's total underestimate is of greater distance
than that of a complete path already found.

3.2.2 HEURISTIC FOR GRID MAPS

On a grid map, there are well-known heuristic
functions to use. Some are explained below :

Manhattan Distance
The standard heuristic is the Manhattan distance.

Compute total number of squares moved horizontally and
vertically to reach the target square from the current
square, ignoring diagonal movement, and ignoring any
obstacles that may be in the way :

h(n) = (abs(n.x-goal.x) + abs(n.y-goal.y))

Diagonal Distance
If the map allow diagonal movement then the

algorihtm need a different heuristic. Here is the function :

h_diagonal(n) = min(abs(n.x-goal.x), abs(n.y-goal.y))
h_straight(n) = (abs(n.x-goal.x) + abs(n.y-goal.y))

h(n) = h_diagonal(n) + (h_straight(n) - 2*h_diagonal(n))

Here compute h_diagonal(n) = the number of steps can
take along a diagonal, h_straight(n) = the Manhattan
distance, and then combine the two by considering all
diagonal steps to cost D2, and then all remaining straight
steps (note that this is the number of straight steps in the
Manhattan distance, minus two straight steps for each
diagonal step we took instead.

Euclidan Distance
This is equal to straight–line distance between

two point. Take coordinate of each square and compute
them just as a point. However, if this is the case, it may

have trouble with using B&B directly because the cost
function g will not match the heuristic function h. Since
Euclidean distance is shorter than Manhattan or diagonal
distance, it will still give shortest paths, but B&B will take
longer to run

h(n) = sqrt((n.x-goal.x)^2 + (n.y-goal.y)^2)

Euclidan Distance-Squared
Some web pages recommend that avoid the expensive

square root in the Euclidean distance by just using
distance-squared:

h(n) = ((n.x-goal.x)^2 + (n.y-goal.y)^2)

This definitely runs into the scale problem. When
B&B computes f(n) = g(n) + h(n), the square of distance
will be much higher than the cost g and it will end up with
an overestimating heuristic. For longer distances, this will
approach the extreme of g(n) not really counting anymore,
and B&B will degrade into BFS.

4. OPTIMIZING FOR HEURISTICALLY
INFORMED SEARCH

4.1 DYNAMIC PROGRAMMING

There are many ways to improve efficiency,
however, and that is to avoid doing the same work twice.
Do this using Dynamic Programming. Dynamic
Programming is a method to solve a problem with divide
it to set of steps and stage in order to get solution from a
sequence of binding decision. It has properties such as :
• Some possible solution
• Each solution is made from the latest stage solution
• Choose a function to bound the choice of solution

See graph below :

Figure 3 Graph simulation using DP

If it is implemented a Branch and Bound with
Dynamic Programming, it save some steps.

Here is the show. As usual, expand S to S→A
and S→D. These have partial paths of 3 and 4
respectively.

S→A (3) expands to S→A→B (7) and S→A→D (8) It
is already had a path go to D, though with the path S→D

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

(4). Since it has a shorter path to D, ignore the longer path
and discard S→A→D (8).

S-→D (4) expands to S→D→A (9) and S→D-
→E (6) Again, S→D→A (9) is a longer path to A than
simply S→A (3) so discard it.

S→D→E (6) expands to S→D→E→B (11) and
S→D→E→F (10). Discard S→D→E→B (11) because
already have a shorter path to B and continue.

S→A→B (7) expands to S→A→B→C (11) and
S→A→B→E (12).Since E is reached with half that cost,
discard this longer path.

S→D→E→F (10) expands to S→D→E→F→G
(13) and it is reached the goal, again with the shortest
path.

Here is the implementation of the combination:

Create a list P
Add the start node S, to P giving it one element
Until first path of P ends with G, or P is empty

Extract the first path from P
Extend first path one step to all neighbors

creating X new paths
Reject all paths with blocks for all paths

that end at the same node, keep only the
shortest one.

Add each remaining new path to of P
Sort all paths by total distance travelled,

shortest first.
If G found -> success. Else -> failure.

Now, the dynamic programming saved some
steps from the first examples. Combining Branch and
Bound with dynamic programming and underestimates
yields the favorite A* path-finding algorithm.

4.2 BREAKING TIES FUNCTION

In some maps there are many paths with the same
length. For example, in flat areas without variation in
terrain, using a grid will lead to many equal-length paths.
B&B might explore all the paths with the same f value,
instead of just one.

To solve this problem, either adjust the g or h
values; it is usually easier to adjust h. The tie breaker
needs to be deterministic with respect to the vertex (i.e., it
shouldn't just be a random number), and it needs to make
the f values differ. Since B&B sorts by f value, making
them different means only one of the "equivalent" f values
will be explored.

One way to break ties is to nudge the scale of h
slightly. If scale it downwards, then f will increase as it
moves towards the goal. Unfortunately, this means that
B&B will prefer to expand vertices close to the starting
point instead of vertices close to the goal. We can instead
scale h upwards slightly (even by 0.1%). B&B will prefer
to expand vertices close to the goal.

heuristic = (1.0 + p)

The factor p should be chosen so that p <
(minimum cost of taking one step) / (expected maximum
path length). Assuming that program doesn't expect the
paths to be more than 1000 steps long, choose p = 1/1000.

A different way to break ties is to prefer paths
that are along the straight line from the starting point to
the goal:

dx1 = current.x - goal.x
dy1 = current.y - goal.y
dx2 = start.x - goal.x
dy2 = start.y - goal.y
cross = abs(dx1*dy2 - dx2*dy1)
heuristic += cross*0.001

This code computes the vector cross-product
between the start to goal vector and the current point to
goal vector. When these vectors don't line up, the cross
product will be larger. The result is that this code will give
some slight preference to a path that lies along the straight
line path from the start to the goal.

Yet another way to break ties is to carefully
construct B&B priority queue so that new insertions with a
specific f value are always ranked better (lower) than old
insertions with the same f value.

5. COMPARISON SOME HEURISTIC

To compare how heuristic influence B&B
program, i’ve add some improvement to my latest task
about shortest path, which i added a breaking ties
function, beside Manhattan Distance and Euclidean
Distance in 8x8 grid map.

Here is the illustration of using Manhattan
Distance.

Figure 4 Manhattan distance heuristic

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

B&B explored almost three quarters of the grid
area,and come with the best path : 15 grid during 65
milliseconds.

Otherwise, with Euclidean Distance, B&B is still
find the best path : 15 grid, yet it also explores all grids in
the map during 2 seconds and 67 milliseconds. It proved
this heuristic will run much worse than Manhattan
Distance.

Figure 5 Euclidean distance heuristic

Then, when using Breaking Ties function in the
heuristic, B&B is run quicker than Manhattan and
Euclidean Distance in 39 milliseconds.

Figure 6 Breaking ties optimization

It is not only explored the less grids ,the path
look nice as very well.

6. CONCLUSION

After all explanation above, there are some point
to notes, either a conclusion :
1. There are many search methods to solve path-

finding problem in grid environment, one of them is
Heuristically Informed Methods.

2. Heuristically Informed Methods need piece of
information about the area being searched.

3. Optimal Search, which is the subset of Heuristic
Methods, use information about the area, and take
them as a heuristic for helping find the path.

4. Branch and Bound is an example of Optimal Search
methods using a heuristic.

5. There are many heuristics for the grid-based area
environtment and each heuristic influence how
algorithm works in finding the path.

6. Optimizing the search can be done with using
various ways, such as :

1. Using dynamic programming
2. Add breaking ties function in the heuristic
3. Construct priority queue carefully

REFERENCES

[1] Russell, S. J., Norvig, P, Artificial Intelligence: A Modern
Approach, 2003.

[2] Munir, Rinaldi, Diktat Kuliah IF2251 Strategi Algoritmik,
Penerbit ITB, 2007.

[3] Museum search, http://bradley.bradley.edu/~chris/searches.
html access date May, 18 2008 at 7.20 am.

[4] Beam Search, http://en.wikipedia.org/wiki/Beam_search.
html access date May, 17 2008 at 3.20 am.

[5] Hill Climbing Search, http://en.wikipedia.org/wiki/
Hill_climbing. html access date May, 17 2008 at 3.05 am.

[6] Best First Search, http://en.wikipedia.org/wiki/Best-first
_search. html access date May, 17 2008 at 1.56 am.

[7] Breadth First Search, http://en.wikipedia.org/wiki/Breadth-
first _search. html access date May, 17 2008 at 1.35 am.

[8] Depth First Search, http://en.wikipedia.org/wiki/Depth-first
_search. html access date May, 17 2008 at 1.56 am.

PAPER IF2251 STRATEGI ALGORITMIK TAHUN 2008

http://en.wikipedia.org/wiki/Depth-first%20_search
http://en.wikipedia.org/wiki/Depth-first%20_search
http://en.wikipedia.org/wiki/Breadth-first%20_search
http://en.wikipedia.org/wiki/Breadth-first%20_search
http://en.wikipedia.org/wiki/Best-first%20_search
http://en.wikipedia.org/wiki/Best-first%20_search
http://en.wikipedia.org/wiki/%20Hill_climbing
http://en.wikipedia.org/wiki/%20Hill_climbing
http://en.wikipedia.org/wiki/Beam_search
http://bradley.bradley.edu/~chris/searches

	ABSTRACT
	1.PREFACE
	2.BLIND SEARCH
	3.HEURISTICALLY INFORMED METHODS
	3.2OPTIMAL SEARCH

