

Getting Started to Apache Hadoop

Running Hadoop Common, HDFS, Hadoop YARN, and Hadoop MapReduce on Multi
Nodes

Ari Pratama Zhorifiandi
Computer Science Department

School of Electrical Engineering and Informatics
Institut Teknologi Bandung

Bandung, Indonesia
13514039@std.stei.itb.ac.id

Abstract— Hadoop has become everyone's big data darling.
But it can only do so much, and savvy businesses need to make sure
it's a good fit for their needs. In the past few years, Hadoop has
earned a lofty reputation as the go-to big data analytics engine. To
many, it's synonymous with big data technology. But the open
source distributed processing framework isn't the right answer to
every big data problem, and companies looking to deploy it need
to carefully evaluate when to use Hadoop -- and when to turn to
something else. In order to fulfil its needs, we should understand
how to use Hadoop. In this paper, I will show how to build and
configure Hadoop from source code.

Keywords—hadoop; distributed computing; hdfs; mapreduce;
big data

I. INTRODUCTION
Hadoop is an open source, Java-based programming

framework which is famous for supporting the processing and
storage of tremendous large data sets in a distributed computing
environment. It is part of the Apache project sponsored by the
Apache Software Foundation.

Hadoop makes it possible to run applications on systems
with thousands of commodity hardware nodes, and to handle
thousands of terabytes of data. Its distributed file system
facilitates rapid data transfer rates among nodes and allows the
system to continue operating in case of a node failure. This
approach lowers the risk of catastrophic system failure and
unexpected data loss, even if a significant number of nodes
become inoperative. Consequently, Hadoop quickly emerged as
a foundation for big data processing tasks, such as scientific
analytics, business and sales planning, and processing enormous
volumes of sensor data, including from internet of things
sensors.

II. BACKGROUND
As a software framework, Hadoop is composed of numerous

functional modules. Basically, Hadoop uses Hadoop Common
as a kernel to provide the framework's essential libraries. Other
components include Hadoop Distributed File System (HDFS),
which is capable of storing data across thousands of commodity

servers to achieve high bandwidth between nodes; Hadoop Yet
Another Resource Negotiator (YARN), which provides resource
management and scheduling for user applications; and Hadoop
MapReduce, which provides the programming model used to
tackle large distributed data processing -- mapping data and
reducing it to a result.

HDFS has become a vital stuff for managing pools of big
data and supporting big data analytics applications. Server
failures are common because HDFS typically is deployed on
low-cost commodity hardware. The file system is designed to be
highly fault-tolerant, however, by facilitating the rapid transfer
of data between compute nodes and enabling Hadoop systems to
continue running if a node fails. That decreases the risk of
catastrophic failure, even in the event that numerous nodes fail.
It uses a master/slave architecture, with each cluster consisting
of a single NameNode that manages file system operations and
supporting DataNodes that manage data storage on individual
compute nodes.

YARN is one of the key features in the second-generation
Hadoop 2 version of the Apache Software Foundation's open
source distributed processing framework. Originally described
by Apache as a redesigned resource manager, YARN is now
characterized as a large-scale, distributed operating system for
big data applications.

YARN is a software rewrite that decouples MapReduce's
resource management and scheduling capabilities from the data
processing component, enabling Hadoop to support more varied
processing approaches and a broader array of applications.
YARN combines a central resource manager that reconciles the
way applications use Hadoop system resources with node
manager agents that monitor the processing operations of
individual cluster nodes.

Hadoop enables resilient, distributed processing of massive
unstructured data sets across commodity computer clusters, in
which each node of the cluster includes its own storage.
MapReduce serves two essential functions: It parcels out work
to various nodes within the cluster or map, and it organizes and

reduces the results from each node into a cohesive answer to a
query. To distribute input data and collate results, MapReduce
operates in parallel across massive cluster sizes. Because cluster
size doesn't affect a processing job's final results, jobs can be
split across almost any number of servers.

III. BUILDING FROM SOURCE CODE
Building Hadoop from source code is essential for further

development. We can modify how Hadoop works after we
successfully build it from source code. First step you need to do
is clone the git repository of Apache Hadoop. You can find it
here https://github.com/apache/hadoop.

After completely clone the repository, You need to meet
these requirements:

* Unix System

* JDK 1.6

* Maven 3.1.1

* ProtocolBuffer 2.4.1+ (for MapReduce and HDFS)

* CMake 2.6 or newer (if compiling native code)

* Internet connection for first build (to fetch all Maven and
Hadoop dependencies)

Please make sure you’re using the right version, because
different version could cause to unusual errors while building.
Then you can run one of these command on your Hadoop
directory

* Clean : mvn clean [-Preleasedocs]

* Compile : mvn compile [-Pnative]

* Run tests : mvn test [-Pnative] [-Pshelltest]

* Create JAR : mvn package

* Run findbugs : mvn compile findbugs:findbugs

* Run checkstyle : mvn compile checkstyle:checkstyle

* Install JAR in M2 cache : mvn install

* Deploy JAR to Maven repo : mvn deploy

* Build distribution : mvn package

* Change Hadoop version : mvn versions:set

I create binary distribution without native code and without
documentation, then I used this command:

$sudo mvn package -Pdist,native -DskipTests -Dtar

It will take several time to finish building it. Different OS
configuration could lead some trouble while building Hadoop.
If you find some problem, you can find the solution in here
https://issues.apache.org/jira/browse/HADOOP/ .

IV. SETTING UP MULTI NODE CLUSTER
After finishing build hadoop, we can move forward to setup

multi node cluster for Hadoop. You can find installed Hadoop in
[Your Clone Directory]/hadoop-dist/target/hadoop-2.7.2 . Then,
try the following command:

$bin hadoop
This will display the usage documentation for the hadoop

script. Basically, Hadoop are already supported to Single Nodes
Cluster and ready to startHadoop cluster in one of the three
supported modes:

• Local (Standalone) Mode

• Pseudo-Distributed Mode

• Fully-Distributed Mode

But, We will go through multi node cluster. First, we need to
set up a RSA public/private key pair to be able to ssh into the
node. On each node (both master and slave), type the following
commands to generate RSA key pair of the node.

$ssh-keygen -t rsa -P "" –f $HOME/.ssh/id_rsa

The private key is stored in the file specified by the –f option,
in this case is $HOME/.ssh/id_rsa, and the public key is stored
in the file with the same name but with a .pub extension
appended, in this case will be $HOME/.ssh/id_rsa.pub.

Then, we need to make sure that the public key is authorized
by copying the public key into $HOME/.ssh/authorized_keys
using the following command.

$ cat $HOME/.ssh/id_rsa.pub >>
$HOME/.ssh/authorized_keys

We need to make sure that host names in the cluster are being
configured correctly in the host file at /etc/host so that each node
can be communicated by its name rather than its IP-address. We
then ssh to localhost machine and the actual host names to make
sure that ssh is working correctly. Both the master node and the
slave node must be able to ssh to each other. This step will also
add the hosts’ fingerprint into the known host file.

$ ssh localhost
$ ssh zhorifiandi@Zhorifiandi.local

Finally, we need to distribute the public key of the master
node to all slave nodes in the cluster by using the following
command to append the public key to a remote host.

$ cat $HOME/.ssh/id_rsa.pub | ssh USERNAME@HOST_NAME
'cat >> $HOME/.ssh/authorized_keys'

After that, you need to edit following config files in your
Hadoop directory

1) etc/hadoop/core-site.xml

<configuration>
 <property>
 <name>fs.default.name</name>
 <value>hdfs://Zhorifiandi.local:9000</value>
 </property><property>
 <name>hadoop.tmp.dir</name>
 <value>/tmp/hadoop-${user.name}</value>
 </property>
</configuration>

2) etc/hadoop/hdfs-site.xml

<configuration>
 <property>
 <name>dfs.replication</name>
 <value>4</value>
 </property><property>
 <name>dfs.permissions</name>
 <value>false</value>
 </property>
</configuration>

3) etc/hadoop/mapred-site.xml

<configuration>
 <property>
 <name>mapred.job.tracker</name>
 <value>zhorifiandi@Zhorifiandi.local:9001</value
>
 </property><property>
 <name>mapred.tasktracker.map.tasks.maximum</name
>
 <value>1</value>
 </property><property>
 <name>mapred.tasktracker.reduce.tasks.maximum</n
ame>
 <value>1</value>
 </property><property>
 <name>mapred.max.split.size</name>
 <value>1000</value>
 </property>
</configuration>

4) etc/hadoop/yarn-site.xml

<configuration>
 <property>
 <name>yarn.nodemanager.aux-services

 </name>
 <value>mapreduce_shuffle</value>
 </property>
</configuration>

5) etc/hadoop/masters

zhorifiandi@Zhorifiandi.local

6) etc/hadoop/slaves

localhost

V. EXECUTION

Before starting our Hadoop cluster, we need to
initialize the HDFS first by using the following command.

$ bin/Hadoop namenode -format

 Then, It’s time to start our Hadoop cluster, just execute
the following command:

 $ sbin/start-all.sh

 We can test whether hadoop already working or not by
running a job. I run mapreduce grep job by these following
commands:

$ bin/hdfs dfs -mkdir /user
$ bin/hdfs dfs -mkdir /user/zhorifiandi
$ bin/hdfs dfs –put etc/hadoop input
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.7.2.jar grep input output 'dfs[a-
z.]+'
$ bin/hdfs dfs –cat output

Then, you’ll get this result:

Fig. 1. Result of Running hadoop job

After finish running the job, you’ll need to stop all
nodes by running this command:

 $ sbin/stop-all.sh

CONCLUSION
 This paper has shown you how to configure and
running Hadoop on multiple nodes, but it still operate in
localhost. In further exploration, I will show you how to run it
on more nodes. It can be run on a network-testbed like Emulab.

REFERENCES

[1] Tom White, Hadoop: The Definitive Guide, O'Reilly Media, Inc., 2009
[2] https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-

common/SingleCluster.html
[3] http://boatboat001.com/index.php/blogs/view/setting_up_a_hadoop_clus

ter_under_mac_os_x_mountain

STATEMENT
 I hereby declare that paper that I wrote is my own
writing, not adaptation, or translation from someone else's
paper, and not plagiarism.

Bandung, May 3rd 2017

Ari Pratama Zhorifiandi

13514039

