
IF3280 Socio-Informatics and Profesionalism Paper, Semester II 2016/2017 

 

 

Progressive Web Application 
Migrating Web Application to a Progressive Web Application 

 

Kristianto Karim 

Computer Science/Informatics 

School of Electrical Engineering and Informatics 

Institut Teknologi Bandung, Jl. Ganesha No.10, Bandung, Indonesia 

kristiantokarim@gmail.com 

 

 
Abstract—Native application has good user experience but 

large file size and it needs installer. On the other hand, user 

experience of the web application is so unfriendly but it does not 

need installer and has a very small size. In this paper, progressive 

web application will be explained, including the way to 

implement it on web application. Even though it has not been 

supported by many browsers yet, I believe progressive web 

application can solve the problem stated above because of its fast, 

progressive, responsive, and native application-alike 

characteristic. 

Keywords—PWA; Progressive Web Apps; Responsive; 

Progressive; Migration; Web; User Experience; JavaScript; 

Manifest; Service Worker; Application Shell 

I. INTRODUCTION 

The increasing usage of mobile devices and internet has 
made these two products of nowadays’ development a 
necessity for all of us. Through the mobile devices, we can 
download various application from the internet for our 
purposes. We can search for information, communicate 
through social media, and many other things anywhere, using 
the application we have downloaded on our mobile devices.  

However, as time goes by, application size is getting larger 
and larger because of its increasing features. It results in more 
and more storage space is needed for the application. 
Indirectly, this may lead to increasing amount of electronic 
waste as the old storage space will be replaced by new larger 
storage space. Furthermore, the use of native application 
becomes not instant as it has to be downloaded and installed to 
our mobile device. Weaknesses in native application can be 
overcome by using web application which is more instant and 
takes less storage space because we just need to access it 
through URL. Still, web application also has big weakness, that 
is the lack of user experience when using it compared to native 
application. 

The problem stated above can be solved using progressive 
web application (hereinafter referred to as PWA). PWA is a 
web-based application that utilizes the features from modern 
browser in order to act as if it were a native application. 

II. THEORITICAL BASIS 

A. Progressive Web App 

Progressive Web Apps is a term for web-based application 
that uses the most up-to-date web technologies. PWA is 
actually a regular web-based application, but it makes great use 
of the modern browser features in order to appear as though it 
were a native application. 

 

Image 1: Example of PWA View (Source: https://cdn-images-
1.medium.com/max/800/0*sfgFRKgJTDNgIK_J.png) 

 

Basically, PWA does not look different from the regular 
web application because it consists of HTML, CSS, JavaScript 
and accessed through internet browser. What distinguishes it is 
because PWA qualifies as follows:  

1. Responsive: Can adjust to various screen sizes. 



IF3280 Socio-Informatics and Profesionalism Paper, Semester II 2016/2017 

 

2. Progressive: Can be run by all users because the 
content is built progressively. 

3. App-like: Gives user experience to the user as in 
native application through its interaction and 
navigation. 

4. Fresh: Always up-to-date. 

5. Safe: Secured with HTTPS. 

6. Discoverable: Identified as an application (W3C 
manifest) and can be found by search engines. 

7. Re-engageable: Has a feature that actively includes 
users such as push notification. 

8. Installable: Users can save it as an application 
without having to install from AppStore. 

9. Linkable: Easy to share through URL without having 
to go through a complicated installation. 

10. Connectivity-Independent: Service Workers 
technology allows PWA to run without internet 
connection or through bad connection. 

Note that PWA is different from the technologies such as 
Cordova, React Native, NativeScript and Electron. Those 
technologies create web-based application and wrap it into an 
APK or EXE that need to be installed while in PWA, it is not 
wrapped into an APK or EXE. 

B. Progressive Web Apps Standard 

A web-based application can be regarded as progressive 
web application if it meets the following requirements: 

1. Site is served over HTTPS. 

2. The page is responsive if it is opened on a mobile 
device. 

3. Main page URL (index) can be accessed offline. 

4. There is metadata to add to the Home Screen. 

5. Can be accessed quickly for the first time despite using 
3G. 

6. Sites can be run on various browser (which supports 
JavaScript). 

7. Page transition does not feel like blocked by the 
network. 

8. Each page has a URL. 

The requirements above are the basic requirements for a 
site to be categorized as progressive web application. We can 
verify the conditions above easily through the Lighthouse 
application created by Google. 

C. Concepts and Technologies used by Progressive Web 

Application 

PWA is built using the following concepts and 
technologies: 

1. Manifest: A place to store metadata from web 
application from W3C. 

2. Service Worker: Provides a layer between networks 
with the device that function to perform cache 
mechanisms for web applications as if they can be 
accessed offline.  

3. Application Shell: Serves to provide a temporary 
container from the web application view. 
Progressively, the application will load its content to 
the container. The goal is that the users do not feel like 
loading an old web page so that the temporary content 
is displayed first. 

D. Disadvantages of Progressive Web Application 

Here are the disadvantages of PWA: 

1. Not all browsers support it yet. 

2. Limited to mobile devices with Android operating 
system. 

3. The access to sensors and components of mobile 
devices (camera, GPS, and others) are not as free as in 
native application. 

4. No central repository. 

IV. MIGRATION PROCESS 

In this paper, the migration process of a regular web 
application into PWA will be implemented. 

E. Creating The Manifest File 

Create a file named manifest.json in root directory 
containing JSON in the following format:  

{ 
  "name": "Your apps name", 
  "short_name": "Short apps name", 
  "start_url": "/", 
  "display": "standalone", 
  "background_color": "#fff", 
  "description": "Your site description", 
  "icons": [{ 
    "src": "images/touch/homescreen48.png", 
    "sizes": "48x48", 
    "type": "image/png" 
  }, { 
    "src": "images/touch/homescreen72.png", 
    "sizes": "72x72", 
    "type": "image/png" 
  }, { 
    "src": "images/touch/homescreen96.png", 
    "sizes": "96x96", 
    "type": "image/png" 
  }, { 
    "src": "images/touch/homescreen144.png", 
    "sizes": "144x144", 
    "type": "image/png" 



IF3280 Socio-Informatics and Profesionalism Paper, Semester II 2016/2017 

 

  }, { 
    "src": "images/touch/homescreen168.png", 
    "sizes": "168x168", 
    "type": "image/png" 
  }, { 
    "src": "images/touch/homescreen192.png", 
    "sizes": "192x192", 
    "type": "image/png" 
  }], 
  "related_applications": [{ 
    "platform": "web" 
  }, { 
    "platform": "play", 
    "url": 
"https://play.google.com/store/apps/details?
id=cheeaun.hackerweb" 
  }] 
} 
 

Then, add the following line to the head section of the 
entire page from web application that will be migrated. 

<link rel="manifest" href="/manifest.json" 
/> 
 

This is the manifest.json file that will function to manage 
how web application appear as native application. Note that 
“display” : “standalone” property will change the web 
interface display so that its user experience feels like native.  

F. Service Worker 

Add an empty file named sw.js to the root directory. Then 
add the following code to register the Service Worker. 

navigator.serviceWorker && 
navigator.serviceWorker.register('/sw.js').t
hen(function(registration) { 

  console.log('Excellent, registered with 
scope: ', registration.scope); 

}); 

 

Next, to allow the web application to run offline, cache 
mechanism needs to be added on service worker. The cache 
mechanism can be implemented by adding the following code 
in the sw.js code file. 

self.addEventListener('install', function(e) 
{ 

  e.waitUntil( 

    caches.open('the-magic-
cache').then(function(cache) { 

      return cache.addAll([ 

        '/',  

        '/put.js', 

        '/all.css', 

        '/your page and.html', 

        '/your assets.jpeg', 

        '/here.json' 

      ]); 

    }) 

  ); 

}); 

 

The above code only stores the cache storage. Next we 
should respond to users who are doing HTTP requests with the 
cache we have stored. It can be done by adding the following 
code to sw.js. 

self.addEventListener('fetch', 
function(event) { 

  event.respondWith( 

    
caches.match(event.request).then(function(re
sponse) { 

      return response || 
fetch(event.request); 

    }) 

  ); 

}); 

 

G. Application Shell 

 
Image 2: Application Shell (Source: 

https://developers.google.com/web/updates/images/2015/11/appshell/

appshell-1.jpg) 

 



IF3280 Socio-Informatics and Profesionalism Paper, Semester II 2016/2017 

 

Application shell is the minimal HTML, CSS and 

JavaScript required so that PWA can be loaded directly and 

quickly. Application Shell acts as shell or temporary container 

that will be replaced with the actual content. 

To design the Application shell, there are several things to 

be considered such as: 

1. What should be displayed directly on the screen? 

2. What are the important components to our 

application? 

3. What are the resources needed by application shell? 

 

After the first three steps implemented, we also need to do 

some modifications to our web apps to satisfy all the basic 

requirements of PWA. The usual modifications are switching 

to HTTPS supported web server, lightweighting the initial 

load so the web apps can be accessed in poor connection 

(application shells should be well designed because 

application shells is loaded first), etc. 

V. CONCLUSION 

Although PWA still has weaknesses, PWA can be used to 
solve the storage space and installation time problem in native 
application as well as resolve the issues of lack of interaction 
and user experience from web application. It is shown by the 
instant nature of PWA like a web application, responsive, and 
interactive as in native application. 

REFERENCES 

 
[1] Fern, D. (2016, October 13). Progressive Web Applications, Part 2: 

Pros, Cons, and Looking Ahead. Retrieve from  
https://www.digitalgov.gov 

[2] Queppelin.(2016, November 22). Understanding Progressive Web 
Applications (PWA). Retrieve from http://www.queppelin.com 

[3] LePage P. (2017, April 10). Your First Progressive Web App. Retrieve 
from https://developers.google.com 

[4] Farrugia, K. (2016, August 11). A Beginner’s Guide To Progressive Web 
Apps. Retrieve from https://www.smashingmagazine.com 

[5] Migrate your site to a Progressive Web App. (n.d.). Retrieve from 
https://codelabs.developers.google.com/ 

[6] PWA Tutorial.(n.d.). Retrieve from 
https://github.com/IncredibleWeb/pwa-tutorial 

[7] Taradaev, S. (2016, December 16). BUILDING PROGRESSIVE WEB 
APPS IN 5 SIMPLE STEPS. Retrieve from https://waverleysoftware.com 

[8] Hilmarsson, H. (2017, January 19). We built a PWA from scratch – This 
is what we learned. Retrieved from https://14islands.com 

[9] Buidling a Progressive Web App in Polymer from Scratch.(n.d). 
Retrieve from https://codelabs.developers.google.com/ 

[10] Russel, A. (2015, June 15). Progressive Web Apps: Escaping Tabs 
Without Losing Our Soul. Retrieve from https://infrequently.org 

 

 

 

 

 

 

 

 

STATEMENT 

 I hereby declare that the paper I am writing is my own 
work, not an adaption, or a translation of someone else’s paper, 
and not plagiarism. 

Bandung, 5 May 2017    

 

Kristianto Karim - 13514075 

 

 

 

 

 

 


