
Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

Comparing Multi-Server Configuration for Big Data
Processing using Hadoop, SWIM and Gnuplot

Praditya Raudi Avinanto 13514087
Informatics / Computer Science

School of Electrical Engineering and Informatics
Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia

13514087@std.stei.itb.ac.id

Abstract—Nowadays most of enterprises are using big data to
run their business. And for business sake they just want to use
necessary specification of multi-server to handle this bunch data.
But it’s really difficult to find a method to know the most suitable
specification for them. They need to compare any options of
specification for them, which is will very costly. For this problem
SWIM (Statistical Workload Injector for MapReduce)
benchmark is the proposed solution. SWIM can do rigorous
performance measurement of MapReduce systems. SWIM
contains suites of workloads of thousands of jobs, with complex
data, arrival, and computation patterns. So SWIM can change
the given workload to be most suitable form for your server to
handle and it depends on how much memory and sum of nodes
do your server had. This workload called as synthetic
representative workload. Furthermore we can run it on Hadoop
so you can see the statistical result of the performance of your
configuration by runtime execution of a task with that big data.
Then we can visualize the data using Gnuplot to see the
difference. For this experiment we used Hadoop because this
software is the origin of MapReduce and integrated to SWIM.
Based on experiment you can compare and decide which one of
the configuration is good enough to support your enterprise or
business.

Keywords—big data; MapReduce; SWIM; hadoop;
performance, gnuplot

I. INTRODUCTION
In this era it’s very difficult to find any enterprise that just

uses small amount of data for their business. Most of them are
using big data now in order to keep them stay in competitive
environment. Of course this is become a problem because the
bigger the data, the better performance computing we needed.
And for business sake we don’t want to waste our money for
unnecessary high-end specification of multi-server
configuration to handle this data. They just want the
specification or configuration of distributed multi-server that
are good enough to handle this bunch of data. And of course
this will give you another problem, even maybe this become a
bigger problem than before, if we see it on economy sector.

Today there is some method to know about the comparison
of two multi-server configurations accurately. The first one is
you need to try it on a similar configuration with the proposed
one with the same amount of machine, and you do it for both
configurations. Of course this method will burn your wallet.
The other options is to hire a distributed-system analyst to

calculate and estimate the comparison between two
configurations that you proposed based on written specification
of the machine and his experiences. This method will safe you
more money but will be far less accurate than previous method.
The third method is to use a cloud-virtual machine to virtualize
your configuration and you can see the result afterwards. This
method is as accurate as the first method but at some rate this
method will be not effective. First thing is that not all cloud-
virtual machines are free to use. We admit it that there are
indeed free to use cloud-virtual machine. But this free services
must be had some constraint to some extent of usage. For
example maybe you’re not permitted to use more than four PCs
at one moment. But so far the third solution is the best solution
because it used least cost and give most accurate result.

But even we have the better solution to this problem, we
proposed SWIM (Statistical Workload Injector for
MapReduce). SWIM can do rigorous performance
measurement of MapReduce systems. SWIM can change the
given workload to be most suitable form for your server to
handle and it depends on how much memory and sum of nodes
do your server had. This workload called as synthetic
representative workload. Furthermore we can run it on Hadoop
so you can see the statistical result of the performance of your
configuration by runtime execution of a task with that big data.
Then we can visualize the data using Gnuplot to see the
difference. Although maybe this method is less accurate than
the first method but this method’s accuracy is not a joke.
SWIM is really trusted approach because it proved by how
frequently many developers around the world used it to
compare the performance of their own experiment using
distributed-system. This method beats other methods because it
gives enough tolerable accuracy, free and has no constraint to
use it.

In the following sections, we present literature study based
on this topic, proposed method to solve this topic, experiment
result of the method, discussion and conclusion.

II. LITERATURE STUDY

A. Distributed System
A distributed system is a model of a system in which each

component is independent but still working together to serve
the client. Each components or we usually call it nodes are
connected so they can communicate and coordinate their
actions by passing messages. The components interact with

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

each other in order to achieve a common goal. Three
significant characteristics of distributed systems are:
concurrency of components, lack of a global clock, and
independent failure of components.

Distributed system is also used to solve computational
problems. They solve it by divide the problem into many tasks
and then each computer do the task simultaneous. And for
some kind of problem they do message passing to each nodes.

Fig 1. Architecture of distributed system

B. Hadoop
Apache Hadoop is an open-source software framework

written in java for storing data and running applications on
clusters of nodes that have the distribution of data. Hadoop has
two core parts, they are storage part, known as Hadoop
Distributed File System (HDFS), and processing part, known
as MapReduce programming model.

The base Apache Hadoop framework is composed of the
following modules:

• Hadoop Common – contains libraries and utilities
needed by other Hadoop modules;

• Hadoop Distributed File System (HDFS) – a
distributed file-system that stores data on
commodity machines, providing very high
aggregate bandwidth across the cluster;

• Hadoop YARN – a resource-management
platform responsible for managing computing
resources in clusters and using them for
scheduling of users' applications and

• Hadoop MapReduce – an implementation of the
MapReduce programming model for large scale
data processing.

C. MapReduce
MapReduce is a processing technique and a framework for

distributed computing based on java. The MapReduce
algorithm contains two important tasks, namely Map and
Reduce. Map will convert a set of data into tuples (key/value).
Secondly, reduce task, which takes the output from a map as an
input and combines those data tuples into a smaller set of
tuples. Map task is always performed first before Reduce task.
Map reduce is frequently used for distributed computing
because it support scalability on the data that being proceed.

Below is the explanation about how MapReduce works

• MapReduce program executes in three stages,
namely map stage, shuffle stage, and reduce stage.

o Map stage: The map or mapper’s job is to
process the input data. Generally the
input data is in the form of file or
directory and is stored in the Hadoop
Distributed File System (HDFS). The
input file is passed to the mapper
function line by line. The mapper
processes the data and creates several
small chunks of data.

o Reduce stage: This stage is the
combination of the Shuffle stage and the
Reduce stage. The Reducer’s job is to
process the data that comes from the
mapper. After processing, it produces a
new set of output, which will be stored in
the HDFS.

• During a MapReduce job, Hadoop sends the Map
and Reduce tasks to the appropriate servers in the
cluster.

• The framework manages all the details of data-
passing such as issuing tasks, verifying task
completion, and copying data around the cluster
between the nodes.

• Most of the computing takes place on nodes with
data on local disks that reduces the network traffic.

• After completion of the given tasks, the cluster
collects and reduces the data to form an
appropriate result, and sends it back to the Hadoop
server.

Fig 2. Visualization of mapreduce process

D. SWIM (Statistical Workload Injector for MapReduce)
SWIM includes

• Repository of real life MapReduce workloads
from production systems.

• Workload synthesis tools to generate
representative test workloads by sampling
historical MapReduce cluster traces.

• Workload replay tools to execute the historical or
test workloads with low performance overhead.

SWIM enables rigorous performance measurement of
MapReduce systems. SWIM contains suites of workloads of

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

thousands of jobs, with complex data, arrival, and computation
patterns. This represents an advance over previous MapReduce
pseudo-benchmarks of limited diversity and scope. SWIM
informs both highly targeted, workload specific optimizations,
as well as designs that intend to bring general benefit.

SWIM can give you an accurate representative workload of
big data so it will suit your configuration for further objectives
like testing or comparing some distributed system. SWIM is
currently integrated with Hadoop. The performance and
evaluation science behind it is extensible to MapReduce
systems in general.

E. Gnuplot
Gnuplot is a free to use command-line based program for

Linux, OS/2, MS Windows, OSX, VMS, and many other
platforms. This program is used to visualize mathematical
functions and data. It can visualize the data in many forms
including dot chart, line chart, bar chart, and etc. Furthermore
this program can set the type of the output like png, jpg,
postcard and manymore. Now Gnuplot has grown to support
many non-interactive uses such as web scripting.

III. THE PROPOSED METHOD
This sections will explains about the proposed SWIM

method, more precisely about how to compare two difference
multi-server configurations that process big data using Hadoop
and SWIM. The step is divided into four sub-sections. Those
four sub-sections are preparing the nodes, preparing the
workloads using SWIM, running the synthetic representative
workloads using Hadoop, and visualizing the result using
Gnuplot. In this experiment we will compare four nodes
runtime execution and three nodes runtime execution using the
same workloads on each topology. Before we start the
explanation of each step we want to let you know what
configuration we used for this experiment.

• Processor : 64-bit Intel Quad Core Xeon E5530

• Memory : 12 GB

• Operating System : Ubuntu 14.04 64-bit

• Connection : 1 Gbps

• Data : One hour Facebook workloads in 2010 (you
can find it on the SWIM repository)

• Software for big data processing : Hadoop 2.7.1

In this section we assume the reader already know how to
configure Hadoop in multi-node cluster, know how to run it,
has all dependencies which are needed to run SWIM or
Hadoop and have SWIM script from the Github or another
sources. All scripts or programs that mentioned in the below
are coming from SWIM Github repository. So the steps will be
described in detail below

A. Preparing the Nodes
So first we need to configure our distributed system. The

first one is consist of four nodes with one nodes as the master
and the rest as the slaves. Connect it with LAN cable or WiFi
as long as it has transfer rate 1 Gbps. If your network has a
transfer rate more than 1 Gbps, its okay but the result will

likely be different. But if you insist to gain 1 Gbps speed you
can use traffic control or Unix tc command to slow down your
transfer rate.

So then you can see the topology like this.

Fig 3. Scheme of four nodes configuration

After that, with the same manner, you configure again a
distributed system that consists of three nodes. The topology
will look like this

Fig 4. Scheme of three nodes configuration

B. Preparing SWIM Workload
So in this sub-section we will explain you the step of how
to create representative workload using SWIM, but not too
technically. If you want to read the full instruction of these
steps you can visit the SWIM repository. For a brief
explanation, SWIM will create a representative workload
based on historical logs. In this case we use historical logs
of Facebook’s one hours workloads in 2010. For example
if the real configuration needed to run that Facebook
workload was 10 nodes of high-end server, then SWIM
will create the new representative workload so that the
burden felt by each of 10 nodes will be the same as the
burden felt by each of nodes of our configuration. In
general this sub-section consist of three steps.

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

• Parse historical Hadoop logs

First we create a .tsv file from folder of historical
workloads logs using parse-hadoop-jobhistory.pl . Here
is the command

perl	parse-hadoop-jobhistory.pl	[job	history	
dir]	>	outputFile.tsv	

• Synethsizes workloads by sampling historical Hadoop
trace

Then we create synthesizes representative workloads of
short duration using potentially months of trace data
parsed by Step 1 previously. The key synthesis
technique is continuous time window sampling in
multiple dimensions. Here is the command

perl	WorkloadSynthesis.pl							
--inPath=FacebookTrace.tsv							
--outPrefix=FB-
2010_samples_24_times_1hr_							
--repeats=2							
--samples=24							
--length=3600							
--traceStart=FacebookTraceStart							
--traceEnd=FacebookTraceEnd	

The final output of this step is
FB2010_samples_24_times_1hr.tsv as the
representative synthetic workloads.

• Generate scripts to execute the synthetic workload

In this step we will convert the output of the previous
step into scripts that call stub Hadoop jobs to reproduce
activity in the workload.

Here are the commands

javac	GenerateReplayScript.java				
			
java	GenerateReplayScript									
	 [path	to	synthetic	workload	file]									
	 [number	of	machines	in	the	original	
production	cluster]									
	 [number	of	machines	in	the	cluster	
where	the	workload	will	be	run]									
	 [size	of	each	input	partition	in	
bytes]									
	 [number	of	input	partitions]									
	 [output	directory	for	the	scripts]									
	 [HDFS	directory	for	the	input	data]									
	 [prefix	to	workload	output	in	HDFS]									
	 [amount	of	data	per	reduce	task	in	
byptes]									
	 [workload	stdout	stderr	output	dir]									
	 [hadoop	command]									
	 [path	to	WorkGen.jar]									
	 [path	to	workGenKeyValue_conf.xsl]	

Commands above will generate a script test folder.
Inside that folder there are 50 jobs scripts that are ready to be
run.

C. Running the Hadoop
Running Hadoop consist of three steps:

• Creating the map and reduce scripts in java and
change it to jar depends on then user’s need

On this step we will use HDFSWrite.java for
writing the input data set. WorkGen.java as the
map and reduce script for read/shuffle/write data
with prescribed data ratios. Both scripts already
given on the SWIM repository

• Move the input file from your file system to
hadoop file system (HDFS) using HDFSWrite.jar

Here is the command

bin/hadoop	jar	HDFSWrite.jar	
org.apache.hadoop.examples.HDFSWrite	-conf	
conf/randomwriter_conf.xsl	workGenInput	

Command above will write the input to HDFS
folder named workGenInput

• Run the job and see the result or logs

Here is the command

cd	${SCRIPT	TEST	DIR}		
./run-jobs-all.sh	

run-jobs-all.sh is a bash script that calls all of the
run-job-i.sh with 0 <= i <= 49. The result or logs
of this script or jobs will be shown inside
workGenLogs folder inside the script test
directory.

D. Visualize the Data Using Gnuplot
You can see at figure 5, the runtime execution is shown at
the last line of the log files. And this log files are
corresponding to synthetic scripts above. So the total of the
logs must be the same (50 log files).

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

Fig 5. Snapshot of Hadoop’s job log file

Then to visualize the total runtime execution by each
configuration we need to extract just the last line of each
log files to get the time elapsed by the job. To extract this
log files, there are two options, the first option is manually
type it by our hand, and the second one is to create a
program to automatically extract all of the log files.

After we got the time elapsed data for each logs the file
must be look like Table 1.

No Job Experiment 1 Experiment 2

0 30 40

1 20 20

2 31 33

3 22 10

4 24 42

Table 1. Example of extracted runtime execution

Then we just need to run the Gnuplot to visualize the data.
Here is example one of the Gnuplot command to visualize the
data :

set title 'Time Execution Comparasion'

set xlabel 'JobID'

set ylabel 'Time'

set output "SWIM-Comparasion.png"

plot 'Result.txt' using 1:2 with lines,
'Result.txt' using 1:3 with lines

Then the result will be shown in SWIM-Comparasion.png

IV. EXPERIMENT RESULT
We have performed two experiments with the same

workload using difference configuration of multi-server
system. The first experiment we used four nodes configuration
as you can see on figure 3, one node as the master and three
nodes as the slaves. On the second experiment we used three
nodes configuration as you can see on figure 4, one node as the
master and two nodes as the slaves. Here is the result of the
experiment

Job ID Time Executed by
Four Nodes

System

Time Executed by
Three Nodes

System

0 20 25

1 21 24

2 20 25

3 23 25

4 20 25

5 33 33

6 20 25

7 19 24

8 37 26

9 19 24

10 20 24

11 33 45

12 20 24

13 19 24

14 19 23

15 19 24

16 19 25

17 24 28

18 32 25

19 22 43

20 41 68

21 63 76

22 60 79

23 63 88

24 59 60

25 60 53

26 19 24

27 19 23

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

28 20 24

29 19 23

30 20 26

31 41 47

32 35 44

33 34 43

34 41 66

35 20 29

36 21 48

37 62 52

38 37 60

39 84 110

40 109 128

41 130 202

42 20 50

43 20 88

44 19 21

45 20 30

46 22 33

47 20 33

48 23 41

49 20 26

Table 2. Extraction of runtime execution of four nodes and
three nodes configuration

Fig 6. Line chart comparison runtime of four nodes and

three nodes configuration

As you can see from the result above, four nodes
configuration is faster than three nodes configuration. And

obviously we all know about that, but what we want to know
here is how is the comparison between both systems. As we
can see above at the beginning of the job the difference is not
too significant, but in the middle until the end of the job the
more significant difference appeared.

From the observation above we can conclude the cause of
that phenomenon. In the first part of job the difference is not
too big because the slaves or resources to process the data still
available, but in the middle while the four nodes configuration
still have one more resource to use, they can run faster. This is
happened because the four nodes got less waiting time for the
execution of the workloads than the three nodes. The biggest
difference is shown at the jobID number 41, because in this
part the biggest byte of data is required. So the waiting time for
resources is longer needed.

V. DISCUSSION
We have performed two experiments and the results have

been shown at the above section. We find out that two systems
have a lot of difference and its vary depends on the parts of the
job. Because more data means that we need more resources or
nodes to handle it. So as long as the require data is not that big
then both systems are not really have any difference in
performance.

For further studies, other researcher also use the
specification of the machine as variable to their experiment
which is we don’t use it in this experiment because of limited
resources. Also some of them already found out some bugs on
their experiment and tried to solve that problem using their
own version of Hadoop or SWIM.

VI. CONCLUSION
In this paper we have presented a proposed method to

choose the most suitable multi-server configuration for any
enterprise that has big data in order to developing their
business. This method is not perfect but still is the best option
among the others. Because this method is free but give a proper
accuracy. The result of experiment are :

1. Four nodes server is faster than three nodes server

2. The bigger the data, the bigger the difference.

3. The choice depends on the data that the enterprise
using. If the data is not too big then it’s better to
choose the three nodes one because it use less cost but
still can compromise with the data.

This experiment is just one of bunch variety of
experiments. The author know that this experiment is not
too relevant because if we use difference specification of
server it will give us the more related to real world cases,
because the choice of most cases in real world is influenced
by the difference of server specification, not just the
amount of the machine. The author just tried his best to do
the experiment using limited resources (machines) that he
could access.

This experiment is still can be improved by using another
approach for example we tried using parallel system which
are has a different topology from distributed system.

Makalah IF3280 Socio-informatika dan Profesionalisme, Semester II Tahun 2016/2017

ACKNOWLEDGMENT
The author would like to thank God for His blessing so the

author can finish this paper. The author would also like to
thank Dr.Ir. Rinaldi Munir, MT., Dr. Dessi Puji Lestari, and
Dr. Eng. Ayu Purwarianti, ST.,MT. as author’s teacher on
Socio-Informatics and Professionalism subject. The author also
would to thank to Prof. Haryadi Gunawi and Riza Oktavian
from University of Chicago for giving the author chance to
study about distributed system under their upbringing. For the
last, the author would like to thank everyone who supported us
for making this paper.

REFERENCES

[1] Andrews, Gregory R, Foundations of Multithreaded, Parallel, and
Distributed Programming, 2000.

[2] T. Williams and C. Kelley, gnuplot 5.0 An Interactive Plotting Program,
2004.

[3] C. Yanpei, A. Ganapathi, R. Griffith, and R. Katz, The Case for
Evaluating MapReduce Performance Using Workload Suites, 2011

[4] Hadoop MapReduce. Retrieved May, 3 2017, from
https://www.tutorialspoint.com/hadoop/hadoop_mapreduce.htm

[5] Tom White, Hadoop-The Definitive Guide, 4th Edition, 2015
[6] Statistical Workload Injector for MapReduce (SWIM). Retrieved May, 3

2017, from https://github.com/SWIMProjectUCB/SWIM/wiki

STATEMENT
I hereby state that the paper I am writing is my own, not an
adaptation, or a translation of someone else's paper, and not
plagiarism.

Bandung, 5 May 2017

Praditya Raudi A / 13514087

