
Circle Detection and Tracking using OpenCV Library

Muhammad Kamal Nadjieb

Computer Science/Informatics Study Program, School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

E-mail: 13514054@std.stei.itb.ac.id

Abstract— OpenCV (Open Source Computer Vision Library)

is an open source computer vision and machine learning software

library. In this project, the Author will try to detect and track a

circle in an image using OpenCV library with the Author’s

proposed method. The quality of the method is very fine and the

noises are low.

Keywords—OpenCV; Thresholding Operations; Image

Morphology; Canny; Hough Transforms; HSV;

I. INTRODUCTION

OpenCV (Open Source Computer Vision Library) is an
open source computer vision and machine learning software
library. OpenCV was built to provide a common infrastructure
for computer vision applications and to accelerate the use of
machine perception in the commercial products. Being a BSD-
licensed product, OpenCV makes it easy for businesses to
utilize and modify the code.

The library has more than 2500 optimized algorithms,
which includes a comprehensive set of both classic and state-
of-the-art computer vision and machine learning algorithms.
These algorithms can be used to detect and recognize faces,
identify objects, classify human actions in videos, track camera
movements, track moving objects, extract 3D models of
objects, produce 3D point clouds from stereo cameras, stitch
images together to produce a high resolution image of an entire
scene, find similar images from an image database, remove red
eyes from images taken using flash, follow eye movements,
recognize scenery and establish markers to overlay it with
augmented reality, etc. OpenCV is written natively in C++ and
has a templated interface that works seamlessly with STL
containers. It has C++, C, Python, Java and MATLAB
interfaces and supports Windows, Linux, Android and Mac
OS.

In this project, the Author will try to detect and track a
circle in an image using OpenCV library with the Author’s
proposed method.

II. LITERATURE STUDY

A. Thresholding Operations

According to Bradski and Kaehler (2008), thresholding is
the simplest method of image segmentation. Example of its
application is to separate out regions of an image
corresponding to objects which we want to analyze. To
differentiate the pixels we are interested in from the rest (which
will eventually be rejected), we perform a comparison of each

pixels intensity value with respect to a threshold (determined
according to the problem to solve). Once we have separated
properly the important pixels, we can set them with a
determined value to identify them (i.e. we can assign them a
value of 0 (black), 255 (white) or any value that suits our
needs).

In this project, the Author will use minimum and maximum
HSV intensity values as the thresholds. With OpenCV, we can
use cv::inRange function to do that.

Figure 1 Thresholding a RGB frame to HSV frame

Source: Private Documentation

B. Image Morphology

According to Bradski and Kaehler (2008), morphological

operation is a set of operations that process images based on

shapes. Morphological operations apply a structuring element

to an input image and generate an output image. The most

basic morphological operations are Erosion and Dilation. They

have a wide array of uses like removing noise, isolation of

individual elements and joining disparate elements in an

image, and finding of intensity bumps or holes in an image.

1) Dilation

According to Bradski and Kaehler (2008), this operations

consists of convoluting an image A with some kernel (B),

which can have any shape or size, usually a square or circle.

The kernel B has a defined anchor point, usually being the

center of the kernel. As the kernel B is scanned over the

image, we compute the maximal pixel value overlapped by B

and replace the image pixel in the anchor point position with

that maximal value. As we can deduce, this maximizing

operation causes bright regions within an image to “grow”.

With OpenCV, we can use cv::dilate function to do that.

Figure 2 Dilate a frame

Source:

http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_T

heory_Dilatation_2.png

2) Erotion

According to Bradski and Kaehler (2008), this operation is

the converse operation of dilation. What this does is to

compute a local minimum over the area of the kernel. As the

kernel B is scanned over the image, we compute the minimal

pixel value overlapped by B and replace the image pixel under

the anchor point with that minimal value. With OpenCV, we

can use cv::erode function to do that.

Figure 3 Erode a frame

Source:

http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_T

heory_Erosion_2.png

C. Canny

According to Bradski and Kaehler (2008), the Canny Edge

detector was developed by John F. Canny in 1986. Also

known to many as the optimal detector, Canny algorithm aims

to satisfy three main criteria:

1. Low error rate : Meaning a good detection of only

existent edges.

2. Good localization : The distance between edge pixels

detected and real edge pixels have to be minimized.

3. Minimal response : Only one detector response per

edge.

In the Canny algorithm, the first derivatives are computed

in x and y and then combined into four directional derivatives.

The points where these directional derivatives are local

maxima are then candidates for assembling into edges. With

OpenCV, we can use cv::Canny to do that.

Figure 4 Canning a frame

Source: Private Documentation

D. Hough Transforms

According to Bradski and Kaehler (2008), the Hough

transform is a method for finding lines, circles, or other simple

forms in an image. The original Hough transform was a line

transform, which is a relatively fast way of searching a binary

image for straight lines. The transform can be further

generalized to cases other than just simple lines.

1) Hough Line Transform

According to Bradski and Kaehler (2008), the Hough Line

Transform is a transform used to detect straight lines. To apply

the Transform, first an edge detection pre-processing is

desirable. In general, a line can be detected by finding the

number of intersections between curves. The more curves

intersecting means that the line represented by that

intersection have more points. In general, we can define a

threshold of the minimum number of intersections needed to

detect a line. This is what the Hough Line Transform does. It

keeps track of the intersection between curves of every point

in the image. If the number of intersections is above some

threshold, then it declares it as a line with the parameters

 of the intersection point. With OpenCV, we can use

cv::HoughLines to do that.

http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_Theory_Dilatation_2.png
http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_Theory_Dilatation_2.png
http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_Theory_Erosion_2.png
http://docs.opencv.org/2.4/_images/Morphology_1_Tutorial_Theory_Erosion_2.png

Figure 5 Finding Lines using Hough Line Transform

Source:

http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Or

iginal_Image.jpg

http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Re

sult.jpg

2) Hough Circle Transform

According to Bradski and Kaehler (2008), the Hough

Circle Transform works in a roughly analogous way to the

Hough Line Transform. In the line detection case, a line was

defined by two parameters . With the circle case, we

need three parameters to define a circle:

where define the center position (gree point)

and is the radius, which allows us to completely define a

circle. For sake of efficiency, OpenCV implements a detection

method slightly trickier than the standard Hough Transform:

The Hough gradient method. In OpenCV, we can use

cv::HoughCircles to do that.

Figure 6 Find a circle using Hough Circle Transform

Source: Private Transformation

III. THE PROPOSED METHOD

The proposed method is follows (the block diagram of the
proposed method is shown Figure 7):

1. Capture video or load an image and convert it to

RGB frame.

2. Convert the RGB frame to HSV frame.

3. Thresholding the HSV frame with minimum and

maximum HSV values

4. Eroding the HSV frame and convert it to erode frame

5. Dilate the erode frame and convert it to dilate frame

6. Find edges from dilate frame and convert it to edges

frame using Canny Edges detector

7. Find the circles from edges frame using Hough Circle

Transform

Figure 7 The Proposed Method

Source: Private Documentation

IV. RESULTS AND DISCUSSION

The Author have performed some experiments to see if the
method can detect a circle in an image or not. The Author use
an image in PNG format and video capture from webcam as
the test images.

1) PNG Image Test

Below is the result of the test.

Figure 8 The result of PNG Image Test

Source: Private Documentation

As we can see that the method can detect and track a circle

in an image.

2) Webcam Source Image Test

Below is the result of the test.

http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Original_Image.jpg
http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Original_Image.jpg
http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Result.jpg
http://docs.opencv.org/2.4/_images/Hough_Lines_Tutorial_Result.jpg

Figure 9 The result of Webcam Source Image Test

Source: Private Documentation

As we can see that the method can detect and track a

circle in a captured video from webcam.

CONCLUSION

OpenCV library is truly a powerful library to do image
processing like detect and track a circle in an image. The
quality of the method is very fine and the noises are low. The
method can be use to detect and track a ball in a soccer robot
competition in KRI (Kontes Robot Indonesia).

ACKNOWLEDGMENT

The author would like to thank Allah SWT for His
guidance since the Author started making this paper until it is
finally done. The author would also express his gratitude to his
three lecturers of IF3280 Socio-informatika dan
Prefosionalisme, Dr. Ir. Rinaldi Munir, MT., Dr. Eng. Ayu
Purwarianti, ST., MT., and Dessi Puji Lestari ST., M.Eng.,
Ph.D. Thanks to the Author’s mother who always supporting
the Author to focus on his study. Thanks to Unit Robotika ITB,
especially Wheeled Soccer Robot Team of ITB a.k.a
DAGOZILLA ITB Team for allowed me to share this project
in this paper. Last but not least, thank you to all of the people

around the Author who have accompanied the Author through
his hardest times.

REFERENCES

[1] Bradski, G., & Kaehler, A. (2008). Image Processing, Learning OpenCV
(pp. 109-141). Sebastopol, CA: O’Reilly Media Inc.

[2] Bradski, G., & Kaehler, A. (2008). Image Transforms, Learning
OpenCV (pp. 144-162). Sebastopol, CA: O’Reilly Media Inc.

BIOGRAPHY

Muhammad Kamal Nadjieb is a Computer

Science/Informatics student at Institut Teknologi Bandung.

Now, he is on a project to win KRI (Kontes Robot Indonesia)

in Wheeled Soccer Robot Competition.

Bandung, 5 May 2017.

Muhammad Kamal Nadjieb

