

Face Tracking for Animated Video with Tracking.js
Computer Vision in Web Based Application

Fanda Yuliana Putri

Informatics/Computer Science, School o f Electrical Engineering and Informat ics

Institut Teknologi Bandung,

Jl. Ganesha No. 10, Bandung 40132, Indonesia

13514023@std.stei.itb.ac.id

Abstract—Computer vision is a scientific discipline that is

concerned with the theory and technology to obtain information

from image. Computer vision is being used in a wide variety of

real-world applications, which include match move, medical

imaging, auto safety, and others. The existed applications were
limited in the form of native apps which need more complex

environment. Meanwhile, Tracking.js is one of the modern

approaches for bringing computer vision into the web. This open
source JavaScript library contains different algorithms and

techniques to be used on the browser environment. This library
allows the developer(s) to create interactive yet effective web

based application, including color tracking, face tracking, face

detection, and much more. Tracking.js will interpret both

predefined or real-time images and videos, and then the

developer can manipulate the result to get desired output. All

those processes happened on the client-side of the browser.

Keywords—computer vision; face tracking; animation, web

application

I. INTRODUCTION

Humans utilize their eyes and brain to sense and gain

informat ion from their surroundings. The eyes will receive

subtle patterns of light and shading from the surface of any

objects. From that point onward, human‟s brain combines all

those visions and then interprets it into some perceptions

regarding the related information. Then, we can conclude

whether the objects are moving or staying in place, have

colors or not, being far or close to us, and many more.
Moreover, from those shading and stuff, human‟s brain can

get the sense of the 3D model from the particular object.
Humans do that kind of process on daily basis almost

effortlessly. But few years ago, it was still impossible for the

machine to do it.

In parallel with the mathematical techniques for analyzing

pattern, shape, and appearance of objects in imagery, the

researchers have been aiming to give a similar capability of

interpreting pictures to a machine or a computer. The

discipline field is called computer vision. In short, computer

vision is a discipline that studies how to reconstruct, interpret

and understand a 3D scene from its 2D images in terms of the

properties of the structures present in the scene [3]. The

researches in computer vision have been tremendously

developing into something that may be even better than

human‟s vision at some cases. In an example is face

recognition. In the early year of computer vision development,

the computer hardly recognized or identified the structure of

the human face. But now days, with a little bit of data training,

the combination of face recognition algorithm and artificial

intelligence, an application can recognize the face of a certain

person with highly noticeable accuracy and precision.

There are a lot of frameworks or libraries from various

languages that take up computer vision as their main object of

development, but in this paper, the focus of the discussion is

Tracking.js, one of the JavaScript library that bring computer

vision into the browser environment. With the power of

JavaScript as their core, Tracking.js has become one of the

potential resources in computer vision. In parallel with the

creativity of the developer, the client-side processing and its

lightweight core will conduct a faster web development. For

example , this library could support the movement-based web

interface with its further-developed features such as color

detection and face recognition [4]. Unfortunately, due to its

early development phase, this library still doesn‟t have as

many algorithms as another platform-based library such as

OpenCV [1].

Actually, in the Tracking.js official website, there are a lot

of interesting examples of its usage in web application, such

as “Tag Friend” that uses face recognition feature to recognize

specific person, “Draw something” that extends color

recognition features to draw colorful line on screen, and many

more [2]. The discussion will traverse on the use of

Tracking.js in simple and interactive web application.

II. RELATED WORKS

 The main feature of web applicat ion to be discussed here is
kind of animat ion (of gif) generator that would follow along

the direction of our face on the screen. This kind of animated

video is a common feature on social media such as Snapchat.
For example in Figure 1, the user will show their face on the

camera and the application will add animation to create funny

or scary effect on the resulting video. Besides Snapchat, there

are another mobile application that could provide the same

effect on real-time videos, for example MSQRD, SNOW,
BOO!, and Camera360. Those applications also provide

animated video with d iverse filters to create the expected

effect.

Figure 1 Snapchat Animated Filter

Source: https://tctechcrunch2011.files.wordpress.com/

 As mentioned in the previous chapter, this kind of

application was limited in native apps such as mobile apps or

desktop apps . We barely find this kind of application on

website because it needs slightly complicated computation and

powerful backend to support both real-time and lightweight

website.

III. METHODS

The steps to create animated video on the users‟ face are

quite simple; those are recognizing the user‟s face structure

and locate the desired animat ion on the right place. The

animation should be well-placed to create flawless effect and

increase the resemblance with the real thing . For that, the

developer(s) need a well-build framework or library with good

accuracy when analyzing the user‟s face structure. Well

known library for face tracking are build with C/C++, Python,
or Java.

 In this project, Tracking.js will be utilized to locate the

users‟ face with its predefined algorithm. Other things to do to

make this project works are loading the frames for the

animation, manage the timing of the frames to create realistic

animation, and locate the animat ion to create an impactful

effect, including resizing the frames and finding the right

place for the animation.

Figure 2 Hammer Frames

 Frames for the animat ion are actually a bunch of images
that contains related pictures of moving object as shown in

Figure 2. These images will be saved as an array and will be
processed alternately and sequentially to create a moving

object, it‟s just the same like how other animation works.

Here‟s a code snippet from the main JavaScript file to load the
image.

function loadImages() {
 var promises = [];
 for (var i = 1; i < 14; i++) {
 var deferred = new $.Deferred();
 var img = new Image();

 img.onload = deferred.resolve;
 img.src = "img/" + i + ".png";
 hammerFrame.push(img);
 promises.push(deferred.promise());

}
return $.when.apply($, promises);

}

 After the frames have been loaded, the next step is locate

the user‟s face location with Tracking.js. Before that, we

should make sure that the browser support Modernizr to get

the user media such as camera or audio (if it‟s needed). After

that, make sure that there‟s an available camera, it can be a

front camera or embedded one. The code below is a snippet to

find camera on a computer.
function searchForFrontCamera() {
 var deferred = new $.Deferred();

if (MediaStreamTrack && MediaStreamTrack.getSources) {
 MediaStreamTrack.getSources(function (sources) {

 var rearCameraIds = sources.filter(function

 (source) {
 return (source.kind === 'video' &&
 source.facing === 'user');

 }).map(function (source) {
 return source.id;
 });
 if (rearCameraIds.length) {
 deferred.resolve(rearCameraIds[0]);
 } else {
 deferred.resolve(null);
 }
 });
} else {
 deferred.resolve(null);
}
return deferred.promise();

}

var deferred = new $.Deferred();
if (!Modernizr.getusermedia) {

deferred.reject('Your browser doesn\'t support
getUserMedia (according to Modernizr).');

}
deferred.resolve();

After getting the permission to use the camera and set it into

ready-to-use state, the next step is to locate the user‟s face

location with Tracking.js. We just need to add some line of

codes that are already available on its official website. Here‟s

some code snippet for setting up the Tracking.js in our project.

var tracker = new tracking.ObjectTracker('face');
 tracker.setInitialScale(4);
 tracker.setStepSize(2);
 tracker.setEdgesDensity(0.1);
trackingTask = tracking.track('#step1 video', tracker);

 We just need to state the name of the object that we want

to track, in this example it‟s „face‟. Another thing to do is

initialize the precision of the tracker when identify ing the

users‟ face. After that, start the tracking. While tracking the

face, there‟s another thing we need to do at the same time, and

that is locating the animation that has been prepared earlier.

Here‟s the code snippet. We can also get the coordinate

informat ion from the face location on the screen. It can be

used as the guide for animat ion positioning later on.

tracker.on('track', function (event) {
 ctx.clearRect(0, 0, canvas.width, canvas.height);

hammer = [];

event.data.forEach(function (rect) {
 frameCount++;
 var orgWidth = 240;
 var orgHeight = 240;
 var newWidth = (rect.width * 2);
 var newHeight = newWidth / orgWidth * orgHeight;
 var fixTop = rect.height * 0.2;
 var fixLeft = -rect.width / 2;
 var image = hammerFrame[frameCount %
 hammerFrame.length];

 hammer.push({
 image: image,
 x: (rect.x + fixLeft),
 y: (rect.y - newHeight + fixTop),
 width: newWidth,
 height: newHeight
 });

 ctx.drawImage(image, (rect.x + fixLeft), (rect.y -
 newHeight + fixTop), newWidth, newHeight);

});
 });

 There‟s no exact value for the code above. It does all

depend on the size of the video screen and the type of the

animation. Some code may need another adjustment according

to the requirements itself. Beside the main JavaScript file, we

do need other files such as HTML files and CSS files to make

our project works perfectly. But those files are really depends

on the need of the project and it‟s main ly talks about the

design. So it‟s basically depending on the hands of the

developer to decide what kind of application we have.

IV. RESULTS AND DISCUSSION

After the main program has been completed, the next thing
to do is testing our program to check whether it works

perfectly or not. To run the main program locally, we need a
basic HTTP server to serve out pages. We can use XAMPP,

AMPP, or other related things. After that, make sure that the

permission for the camera usage is on and then the program
should running by now.

Here‟s the result of the writer‟s simple video animat ion

web apps as shown in Figure 3. It shows the results from the
camera on the computer.

Figure 3 Animated Video with Face Tracking Testing Result

The testing result shows that the program works perfectly

fine. The desired animation is well-aligned with the face so it
could produce a good effect on the video. The writer also tried

this program on many browsers. It works fine on the latest

Google Chrome, Mozilla Firefox, and Microsoft Edge. It
doesn‟t work on Internet Explorer because it cannot detect

getUserMedia. Even though the program works perfectly fine,
in some cases, the writer found out that the face tracking

algorithm is lost the moment the writer try the program when
wearing hijab. The result is not as good as the time the writer

didn‟t wear hijab. Probably it ‟s because the writer‟s eyes

didn‟t showing perfectly on screen. At some angle it couldn‟t
detect the face at all. But besides that problem, overall the

program works fine. Tracking.js really made this project easy
to make and fun to use.

V. CONCLUSION

Based on the making process and program testing, the

writer concludes that Tracking.js is a good JavaScript library

and has so many potentials in it. The main program works

perfectly fine with Tracking.js as the library to track users‟

face location. This library makes the process so much easier

and fun. For the future development it‟ll be great if there‟s a

feature to save the video with animat ion in it.

ACKNOW LEDGMENT

The writer would like to thank God for all His mercy so

this paper could be done finely without any significant
problem. The writer also feels grateful towards all the Socio-

informat ics and Professionalism Lecturers who supported my

works so it could get a better result.

REFERENCES

[1] Tracking.js & The Computer Vision Power of Javascript. Retrieved May
4, 2017, from https://usersnap.com/blog/tracking-js-the-computer-
vision-power-of-javascript/

[2] Tracking.js - A Modern Approach For Computer Vision on The Web.
Retrieved May 4, 2017, from https://trackingjs.com/

[3] What’s Computer Vision?. Retrieved May 3, 2017, from
http://www.bmva.org/visionoverview

[4] 8 Web Development Trends To Look Out For In 2017. Retrieved May 3,
2017, from https://careerfoundry.com/en/blog/web-development/8-web-
development-trends-2017/

PRONOUNCEMENT

I hereby stating that the paper I wrote is my own writ ing, not

an adaption, or translation from someone else‟s paper, and

also not plagiaris m.

Bandung, May 4, 2017

Fanda Yuliana Putri (13514023)

