
IF3280 Socio Informatics and Profesionalism Paper – Sem. II 2016/2017

Single-Page Online Shop App Development using
React and Redux

Garmastewira - 13514068

Informatics/Computer Science Department
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
13514068@std.stei.itb.ac.id

Abstract — Most people surf the internet by using their
mobile phones. The conventional multi-page application is
not suitable for mobile phone because it will provide an
unpleasant experience for the user given its responsiveness. A
trending approach to solve the problem is by converting the
traditional app into a single-page application. One of the most
popular single-page application tool is React and Redux.
Based on the online shop project that is created using React
and Redux, it is proven that both libraries are a great tool for
rapid single-page app development because of its clear data
flow, lucid and small components, therefore providing ease
for project's implementation and testing.

Keywords — Chai, JavaScript, Mocha, Node.js, React,

Redux, responsive, single-page application

I. INTRODUCTION

Surfing the internet can be regarded as humans' primary
needs nowadays. Specifically, people use their
smartphones as their primary platform to browse the
internet. A survey conducted by Kleiner Perkins Caufield
& Byers states that as of 2016, the percentage of users who
use mobile to browse the e-commerce is 52%. On the other
hand, the percentage is much lower for people who use
desktop browser, which is 41% [1].

User experience in mobile and desktop applications
differs in many ways. Mobile app's nature is often
attributed to responsiveness. It requires instant response
upon given action, and multi-page application isn't
suitable. Rendering the whole header back and forth while
clicking links to navigate will give an obnoxious user
experience to the users.

The rise of smartphone users is the reason why single-
page application is trending. It gives smooth transition
between page rendering each time a user navigates sections
of the site, as the application chooses cleverly which part.
It also uses dynamic loading to retrieve data from database
so that it only loads when needed.

Although there are a lot of libraries and frameworks that
offer support for single-web page application, this paper
will only focus on React and Redux. React and Redux has
proven to be the most popular tool for creating single web-
page application. For this case study purpose, we will build
a simple online shop project named as ShopChop that
contains user management, product list, shopping cart,

checkout form, and user's order history modules.

II. LITERATURE STUDY

A. Single-Page Application
Single-page application is a web application that fits on

a single web page with the goal of providing a user
experience similar to that of desktop application. In an
single-page application, HTML, CSS, and JavaScript is
retrieved with a single page load [2]. Other appropriate
resources that are retrieved from the database will be
dynamically loaded with the help of JavaScript's AJAX
feature.

B. React
React is an open-source JavaScript library for building

user interfaces [3]. React is maintained by a developer team
of Facebook. React introduces 3 important concepts that
makes it different from other popular libraries, which are
React components, one-way data flow, and virtual DOM.

Most JavaScript single-page application
libraries/frameworks divide a page's structure into
HTML/CSS and JavaScript components. However, React
sees a component differently. A component is a part of the
page that is small enough to be considered as an
independent and cohesive part. Uniquely, a component will
consist both HTML and JavaScript code. By treating a
component like this, it is easy to define the relationship
between each component, e.g. parent-children.

Another feature that makes React distinct is its one-way
data flow concept. A component is defined by properties
that are passed by the parent's component. A component
cannot modify its properties. React itself actually provides
each component the ability to have a state. Nonetheless,
having an internal state is heavily discouraged. One way
for a component to have a state is to integrate React with
external state container libraries such as Flux and Redux.

Finally, React creates an in-memory data structure
cache, computes the differences efficiently, and updates
the browser's displayed DOM. This cache management is
dubbed as VirtualDOM. This way, a programmer can write
code as if the entire page is rendered on each change as
React handles it automatically.

IF3280 Socio Informatics and Profesionalism Paper – Sem. II 2016/2017

C. Redux
Redux is a predictable state container for JavaScript

applications [4]. It basically helps users to manage many
states that a single-page application might contain. For
example, some of the complex states that are needed to be
managed are selected tabs, current routes, pagination, and
AJAX loading.

Redux has 3 basic components, which are store, actions,
and reducers. Fig. 1 shows the data flow from Redux
components (shown as yellow boxes) to the view
components (shown as red boxes). Below are the details of
Redux's data flow.

1. The store component stores every single state the
application needs. States are often about the view
components' states although not limited to. Note that
there will be only a single central store for the whole
application.

2. The action components are actions that are triggered
upon interactions done by the user, e.g. clicking
button. Actions triggered are instantly dispatched
into the reducer for further processing.

3. The reducer components will receive the actions
dispatched, and examining the type of each action.
Each action with a particular type will be handled in
a different way, and each handling might change the
states stored in the store component.

The view components can be any JavaScript
frameworks/libraries that support single-page application.
However, Redux is often paired with React because of
React's nature of dividing the whole view component into
smaller components with states attached to each
component.

III. METHODS AND TOOLS

A. Client Side Tools
For the application's client side (front-end), React and

Redux will be used as the primary libraries. These two
libraries are the foundation of the single-page application.
React-Redux middleware is used to connect React's
components and Redux's flow. Additionally, Twitter
Bootstrap is used as a framework for the application's CSS
styling and JavaScript behavior.

B. Development Tools
To develop the application, several middlewares are

needed to be managed. NPM will be used as the package
manager. Webpack will be used to bundle all React and
Redux JavaScript files into one JavaScript minified file.
Lastly, Babel will be used to transpile the JavaScript ES6
syntax (which is recommended by React's developers due
to the syntax's nature) into JavaScript ES5. This is
important as most browsers can only interpret JavaScript
ES5 syntax.

C. Server Side Tools
The online shop will use Node.js as the back-end side

programming language. Express.js is also used as a
framework for the routing of the server. For the database,
Sequelizer will be used as a middleware to connect with
the databasa management system, MySQL.

D. Testing Tools
For the testing part, Mocha is used as the runner and

handler of each test case run. React itself has provided a
utility for testing called ReactUtils. One of its core feature
that will be used is its feature to simulate events like button
click easily. JSDOM is used to render a component as if it
is rendered in the browser while the testing is actually
conducted in terminal. The last required testing tool is
Chai, which is used as an assertion tool to check whether a
component is rendered correctly.

E. Online Shop Structure
Fig. 2 shows the structure of the online shop application,

named as ShopChop. ShopChop is basically divided into 2
major subsystems, which are the client side, and the API
server side. The API server side is built using Node.js to
handle data requests from client by retrieving it from the
database which is handled using MySQL.

The client is side is the subsystem that is seen by the
customers. It has 4 core pages, which are the product list,
product detail, shopping cart, and checkout pages. The
flow a customer buying a product is the following.

1. A customer logs in, checks the product list, sees the
detail of each product that is clicked, and adds any
product that is interesting to the shopping cart.

2. After finished of browsing products, a customer can
do a checkout, in which the total price of all of the
products are summed, including tax and delivery
price.

Figure 1. Redux's data flow

Figure 2. ShopChop online shop app's structure

IF3280 Socio Informatics and Profesionalism Paper – Sem. II 2016/2017

TABLE I. Summary table of client side's implementation source code

TABLE II. Summary table of client side's testing source code

No. Test No. of Files Test Cases
1 Actions 8 16
2 Reducers 3 10
3 Components 8 15

IV. RESULTS

A. Client Side
Fig. 3 shows the final results of the client side. The client

side is first initialized with a single HTML file named
index.html that will serve as the loader of the React and
Redux JavaScript bundle file. It also serves as the loader of
external CSS and JavaScript files such as Bootstrap and
JQuery. Besides the index.html file, all of the React and
Redux source codes before bundled are placed into a folder
alongside with a main JavaScript file, and the React routing
file. The user can navigate into 8 different pages based on
the URL route.

Next, the client side folder has 3 main subfolders, which
are components, actions, and reducers. Table I shows the
number of files that are created inside each subfolder. The
components are often the template of each page that can be
navigated. There are only 2 types of the actions, which are
fetching data and posting data to the API server. Lastly,
while the reducer handles a lot of actions, it can be
generally categorized 3 files, each is used to handle
products, users, and orders.

B. Server Side
The server side consists of 8 REST routes, each of them

granting user's specific request. The server is only
contacted by the client side through AJAX mechanism
using Axios middleware. The server side has also created
5 models using Sequelize to wrap the data retrieved from
the database. Fig. 4 shows the general relationship between
each model. The detail of the relationship shown is the
following.

• User's shopping cart implementation is shown as a
User having several AddedProducts, while each
AddedProduct is connected to exactly one Product.

• User can have a lot of Orders, and each Order will
contain several BoughtProducts. Each
BoughtProduct is of course related to one unique
product.

C. Testing Files
Table II shows the number of files that are created for

the testing stage. The number of the testing files matches
with the number of the implementation source codes.
Every action test file contains 2 test cases, one is to check

if the action's type is correct, and the other is to check
whether the action carries the desired payload. Reducer's
test cases are quite similar, in which each file should test
for the action types it can handle and for any unknown
action type. Components' test cases number are arbitrary,
but component with form has more test cases compared to
ordinary ones.

D. Overall Results
Overall, the online shop's implementation is complete.

The project has a responsive display for both mobile and
desktop browsers. User can navigate through pages
without the header and footer re-rendering themselves.
User can register, login, add products to shopping cart, and
purchase the products successfully. The testing side,
however, might need additional test cases for the
components to check the components' wanted behavior
more thoroughly.

V. DISCUSSION

A. Implementation Stage
The most obvious advantage of developing a single-page

application instead of a multi-page app is the separate
development between the client side and the server side.
The server side is 100% free from template rendering job.
It only functions as an API server which mostly only
fetches data from the database. Therefore, the server side
will only require a lightweight back-end framework such
as Express.js, or perhaps Flask if it's developed in Python.

 Moreover, the client side's composition is very tidy and
structured. If the developer wants to see the data retrieval,
they only need to check the actions. The application's state
definition is solely defined in the reducers. Finally, the
rendering job by applying the application's state is done in
the rendering. Thus, the scalability of a client side using
React and Redux is definitely high.

No. Type Total
1 Actions 8
2 Reducers 3
3 Components 8

Figure 3. ShopChop product list page, seen in mobile (left) and
in Desktop (right)

Figure 4. ShopChop database schema

IF3280 Socio Informatics and Profesionalism Paper – Sem. II 2016/2017

B. Testing Stage
The other advantage of building a single-page app using

React and Redux is its ease and comprehension of the
testing stage. Each data flow is handled by action and
reducer, and both can be tested to see the correct state they
should produce using small unit tests. Additionally, with
JSDOM, Chai and ReactUtils, a component is not tested by
its functions' output like the conventional unit testing.
Instead, a component is first rendered as HTML using
JSDOM, and Chai should test whether the component has
the correct rendered output, e.g. has a button, the behavior
if the button is clicked, etc. This is currently the new
approach of testing instead of just mere functional unit
testing.

C. Comparison to Other Libraries
React and Redux is absolutely not the only single page

framework/library available in the internet. Other
frameworks like Angular, Ember.js, Backbone.js, and
Vue.js are also famous and are supported by an active
global community. The strongest contender of React and
Redux is Angular, mainly due to its Facebook vs. Google
issue. Nevertheless, in the past 5 years, Angular has always
been more popular than React according to Google Trends.

Angular uses the classic two-way data binding and
HTML-JavaScript separation. Both features are often
claimed to much easier to learn React's one-way data flow
and HTML-JavaScript integration concept, thus probably
is the reason why Angular is still unbeatable in terms of
popularity. However, React and Redux's evident advantage
is in the testing stage. The units that should be tested are
very simple and clear. Unlike the classic approach, one
must double the work to see the behavior of the JavaScript
as well as the HTML output. As mentioned before, this is
a clear reason why React and Redux apps is way more
scalable than Angular apps.

VI. CONCLUSION

In this paper, the development of a simple online shop
shows that React and Redux is perfect for rapid and tidy
single-page application development. Using React and
Redux makes the development process much simpler in
both of the implementation stage and the testing stage.

Further projects might involve other open source
packages that are build by other people to be combined
with React. Another idea is to make a React Native project,
which is a development tool that uses CSS, React, and
Redux as its primary tool to write mobile application that
are ready to be translated directly into Java Android Studio
or Swift XCode language.

REFERENCES

[1] Meeker, Mary. (June 2016). 2016 Internet Trends Report. Retrieved
May 2, 2017, from http://www.kpcb.com/file/2016-internet-trends-
report

[2] Flanagan, David, "JavaScript - The Definitive Guide", 5th Ed.,
O'Reilly, Sebastopol, CA, 2006, p. 497

[3] Simons, Eric. (May 2017). What Exactly is React?, Retrieved May
5, 2017, from https://thinkster.io/tutorials/what-exactly-is-react

[4] Bachuk, Alex. (June 2016). Redux · An Introduction, Retrieved May
5, 2017, from https://www.smashingmagazine.com/2016/06/an-
introduction-to-redux

DECLARATION

I hereby declare that this paper is my own work, not a
copy or translation of others' works, and not an act of

plagiarism.

Bandung, 5 May 2017

Garmastewira

13514068

