
Makalah IF2120 Socio-Informatika dan Profesionalisme – Sem.II Tahun 2016/2017

A Curious Case of a Double RSA Encryption

Hafizh Afkar Makmur - 135140621

Informatics/Computer Science Major

School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
113514062@std.stei.itb.ac.id

Abstract—This paper introduces an interesting problem

asked in Tokyo Westerns/MMA CTF 2nd 2016 and its

problem. The problem contains an encrypted file and a source

code of the encryption program. The encryption program

contains double RSA encryption so it produces two kinds of

public key. Here it is proven that it is a blunder to do the

double encryption and it is to break the private key using the

two given public key. The solution proves the writer’s gained

skill in both information security especially cryptography and

programming language Python.

Keywords—RSA, python, CTF, information security

I. INTRODUCTION

Nowadays, information are everywhere and someone

can get an information on certain things easily. Obviously,

it is not always good to give a person’s information to

everyone because it can easily fall to irresponsible people

who can easily use it to do fraud and et cetera. That’s why

someone needs to protect their privacy and use certain

knowledge known as information security to better protect

their information from illegal access. One of the means of

information security is to do encryption to some

information to make it unreadable to anyone but the owner

of the document.

One of the methods of encryption still used an the

moment is known as Rivest-Shamir-Adleman encryption

or popularized as RSA encryption. The encryption [1] is an

asymmetrical encryption which uses public key to encrypt

something and private key to decrypt it. This method

hinges on the difficulty of factorizing prime factors of a

number. This method is tested and proven even until now,

40 years after its invention.

Capture-The-Flag of CTF is a contest for people to

prove their prowess on information security knowledge.

The contest is useful for anyone who wants to learn more

about information security and wants to test their

knowledge against others. One of the most famous CTF in

the world is DEFCON which is started is 1992 and held

regularly every year until now. Various similar contest are

held in many universities to test and teach their own

students and friends about information security.

At 3 September 2016 until 5 September 2016 Tokyo

Westerns and MMA held a CTF contest [2]. The contest

was held online and challenges various genres from

Cryptography, Programming, Reversing, Forensics, to

Web knowledge. The contest was in Jeopardy format.

Which means some questions are published and each time

must compete to solve the questions as much and as fast as

possible. The official link of the contest is

https://tokyowesterns.github.io/ctf2016/ and now

everyone can see the questions and the solution of each

question for further study.

The writer competed in this contest under username

codebender and met and solve one particular cryptography

problem about RSA. The writer declares that he solves this

problem on his own as can be seen under problem solver

section on the official website. The problem is “Twin

Prime” which is a Crypto and Warmup problem weighted

50 points.

II. PROBLEM STATEMENT

A. Problem Structure

The problem gives contestant 4 files: encrypt.py,

encrypted, flag1, and flag2. Apparently, there was one file

named flag which contains flag or answer for this problem.

But now the flag is encrypted in the file named encrypted

and now the contestant must figure out what is the content

of the flag file to figure out the answer to this question.

B. Encryption Program

It is known then that file flag in encrypted with a Python

script in encrypt.py. The file generates file encypted, flag1,

and flag2. Encrypt.py uses RSA encryption in its

encryption method and then generates two public key in

file flag1 and flag2. Here is attached the encryption method

in file encrypt.py.

1. def getTwinPrime(N):
2. while True:
3. p = getPrime(N)
4. if isPrime(p+2):
5. return p
6.
7. def genkey(N = 1024):
8. p = getTwinPrime(N)
9. q = getTwinPrime(N)
10. n1 = p*q
11. n2 = (p+2)*(q+2)
12. e = long(65537)
13. d1 = inverse(e, (p-1)*(q-1))
14. d2 = inverse(e, (p+1)*(q+1))
15. key1 = RSA.construct((n1, e, d1))
16. key2 = RSA.construct((n2, e, d2))

https://tokyowesterns.github.io/ctf2016/

Makalah IF2120 Socio-Informatika dan Profesionalisme – Sem.II Tahun 2016/2017

17. if n1 < n2:
18. return (key1, key2)
19. else:
20. return (key2, key1)
21.
22. rsa1, rsa2 = genkey(N)

As is seen, the method searches for twin primes p and

q and use it for double RSA encryption. The program then

generates two public key known as n1 and n2 here and

make two RSA key to make the encryption feasible. The

idea is one must has the two public key plus e variable to

make an encrypted document and therefore can send it

securely to the owner of the private key. Just like RSA, the

program is supposedly secure because there are difficulties

to retrieve p and q from n1 and n2 so the document is secure

even if the attacker knows the value of n1, n2, and e. It is

even seemingly more secure because the document is

encrypted twice with an already strong encryption. But is

it really more secure than a normal RSA encryption?

Nope.

III. PROBLEM SOLUTION BREAKDOWN ANALYSIS

A. Insight for solving the problem

First we must realize that two public key that we have,

n1 and n2, is related. One equals p*q and the other one

equals (p+2)*(q+2). Then, one must know that actually

does not need to know the value of p and q exactly. To

break RSA, one only needs to know the value of (p-1)*(q-

1) or in this case, both (p-1)*(q-1) and (p+1)*(q+1).

Normal RSA is hard because we only know one number

(n) to retrieve two number (p and q) to solve for (p-1)*(q-

1). But know we have two number (n1 and n2) to solve four

number (p, q, p+2, q+2) and ultimately get two numbers

((p-1)*(q-1) and (p+1)*(q+1)). But because n1 and n2 is

supposedly related, the breakdown become easier and

therefore possible.

B. Mathematical analysis

Our target is both (p-1)*(q-1) and (p+1)*(q+1). They

are all both equal to

(p − 1) ∗ (q − 1) = pq – (p + q) + 1

and

(p + 1) ∗ (q + 1) = pq + (p + q) + 1

respectively. To get both value, we only need to know

the value of pq and p+q and plug it into the equation to get

the solution.

We already have two known value n1 and n2 which

equal to

n1 = p ∗ q

and

n2 = (p + 2) ∗ (q + 2) = pq + 2(p + q) + 4.

With this known value, we already got one of the value

that we’d like to know pq which like we have already seen

is equal to n1. Now how do we get p+q? Look carefully in

n2 that there is the value of p+q there. But how do we

retrieve that value? The only other unknown value in n2

equation is pq which we can already got from n1. Therefore,

we can retrieve p+q from n2 using n1 in the following

equation

n2 – n1 = pq + 2(p + q) + 4 – pq = 2(p + q) + 4

2(p + q) = n2 – n1 – 4

p + q =
𝑛2 − 𝑛1 − 4

2

Voila! Now we know both the value of pq and p+q.

Therefore, we know the value of (p-1)*(q-1) and

(p+1)*(q+1) which is

(p − 1) ∗ (q − 1) = pq – (p + q) + 1

 = n1 −
𝑛2−𝑛1−4

2
+ 1

 =
3∗𝑛1−𝑛2+6

2

and

(p + 1) ∗ (q + 1) = pq + (p + q) + 1

 = n1 +
𝑛2−𝑛1−4

2
+ 1

 =
𝑛1+𝑛2−2

2

respectively. Knowing both the value of (p-1)*(q-1)

and (p+1)*(q+1), we can know devise the counter to the

encryption program encrypt.py.

C. Implementaion of the Solution

To create a counter to the encryption program

encrypt.py, we must make a function which can generate

exactly like genkey function as attached above, but with

different input to include all value that we know just like

n1, n2, and e. Therefore, we can devise a function like this

1. def genkey(n1,n2,e):
2. d1 = inverse(e, (3*n1-n2+6)/2)
3. d2 = inverse(e, (n1+n2-2)/2)
4. key1 = RSA.construct((n1, e, d1))
5. key2 = RSA.construct((n2, e, d2))
6. if n1 < n2:
7. return (key1, key2)
8. else:
9. return (key2, key1)
10.
11. rsa1, rsa2 = genkey(N)

We can see that the function is almost exactly the same

as the attached function but with both (p-1)*(q-1) and

(p+1)*(q+1) changed to be computed from n1, n2, and e.

With this, we can get the two RSA keys used for double

RSA encryption and decrypt the file encrypted twice first

using rsa2 and then rsa1, reversing the process. After that,

we can get the flag and the problem is solved.

Makalah IF2120 Socio-Informatika dan Profesionalisme – Sem.II Tahun 2016/2017

IV. LESSON LEARNED AND CONCLUSION

One of the most famous quotes from Bruce Scheneier

[3], a prominent figure in Cryptography, is that everyone,

be him an amateur or a very excellent mathematician which

often devise various cryptography methods, can make a

cryptography method that he can’t break. It is known as

Schneier’s Law. It means that it is not enough knowing that

you can’t break your cryptography program to ensure that

your program is secure. The only known test that is

effective to test a cryptography program is time. A

cryptography method is known as secure if it can withstand

various method of various people trying to break it and

failed. It is proven here that we see a long standing method

known as RSA, a long known encryption method, can be

broken by an attempt to “reinforce” it, supposedly by

doubling it and tweaking it a little bit. Some modification

or even a construction of a new encryption algorithm must

be handled carefully and tested frequently not by the author

himself.

V. ACKNOWLEDGMENT

The first and foremost thanks from the author is to the

God, the All-Seeing, All-Knowing, for giving the author

strength and time to finish this task completely and on time.

Praise be upon Him.

Second thanks is for the writer’s teachers Mr.

Rinaldi .M, Mrs. Ayu .P, and Mrs. Deasy to give the writer

an opportunity to write this paper to prove the writer’s

prowess in information security especially cryptography

and Python programming language. May you all be full of

luck in everything you do.

Another thanks for all my friends who give me

inspiration and support for studying various subjects I’ll

never know about without them. May a wonderful present

and future be with them.

Final thanks for the host of Tokyo Westerns/MMA

CTF 2nd 2016 esepcially ytoku and nomeaning who write

this beautifiul problem “Twin Primes” for the author to

solve. May successful career and excellence be blessed

upon them.

REFERENCES

[1] R. Rivest, A. Shamir and L. Adleman, "A Method

for Obtaining Digital Signatures and Public-Key

Cryptosystems," Communications of the ACM, vol.

2, no. 21, pp. 120-126, 1978.

[2] "Tokyo Westerns/MMA CTF 2nd 2016," Tokyo

Westerns & MMA, 5 9 2016. [Online]. Available:

https://tokyowesterns.github.io/ctf2016/. [Accessed 5

5 2017].

[3] B. Schenier, "Memo to the Amateur Cipher

Designer," 15 10 1998. [Online]. Available:

http://www.schneier.com/crypto-gram-

9810.html#cipherdesign.

STATEMENT

With this statement I declare that theis paper that I write is

my own writing, not an adaptation, nor a translation of

other person’s paper, and not a plagiarism.

 Bandung, 5 Mei 207

Hafizh Afkar Makmur - 13514062

