
Linear Regression Model Learning

using Gradient Descent
Athlete’s Weight-Age-Height Linear Model

Fairuz Astra Pratama

School of Electrical Engineering and Informatics

Bandung Institute of Technology

Bandung, Indonesia

13514104@std.stei.itb.ac.id

Abstract—Linear regression is a statistical method of making a

linear equation that can predict and/or model a dataset with the

least error. On the other hand, gradient descent is an optimization

algorithm that can find the best parameter to minimize a function

with. Combining these two method, we can design a machine

learning algorithm that can accept a dataset and return a linear

relationship between its attribute that can be used to predict data

value in the same domain.

Keywords—machine learning, linear regression, gradient descent

I. INTRODUCTION

 In both statistic and machine learning, linear regression is a
well-known method for its simplicity; making it one of the most
common introductory topic in undergraduate computer science
program. Nevertheless, this method is quite effective to be
implemented at several domains such as determining the
relationship between the weight and height of a person.
Unfortunately, as the name suggest, this method is ineffective
where the relationship between data’s attributes is not linear,
such as the data of population amount and growth rate.

 Gradient descent, on the other hand, is one of the more
common optimization algorithm, that can be used to find the
values of coefficient in a function that minimizes its cost. Seeing
that the model of linear regression is a form of function, we can
use gradient descent to design an algorithm that perform linear
regression to data to produces a function that map the
relationship between its attributes. There are also many more
uses for gradient descent in machine learning, such as using
logarithmic regression rather than linear.

 This paper will be focused on cover both the theoretical basis
and implementation details of this algorithm; and will be using
basketball athlete medical record as case study, where the
algorithm will output the relationship model between the weight,
age and height of athlete.

II. LITERATURE STUDY

A. Linear Regression

Although primarily and originally used in statistic, linear

regression has been used by machine learning to model

relationship between two or more attribute. The basic concept

is very simple; a linear model represents a relationship between

data in form of a linear equation. This equation will accept

several inputs (x’s) and output its prediction for that input value

(y); just like a standard equation. The goal of linear regression

is to make such model where it can accurately predict an

attribute’s value of a data instance given the value of the other

attribute with minimal error.

Figure 1 Example of Linear regression in 2D Cartesian Diagram

source: https://en.wikipedia.org/wiki/Linear_regression

For example, the red line above is a linear model that can be

used to predict the value of ‘y’ given the ‘x’ of the blue dots.

For this case study, imagine we have a data containing health

information with “weight” and “height” as the attributes, and

we want to know how much does a person’s weight given the

height. The linear model needed for this data will be:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑐1 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑐2

Which is very similar to a linear equation of a line in 2

dimensional plane (𝑦 = 𝑚𝑥 + 𝑐). Now, imagine our data had

another field in it named “age.” We will need to add another

variables and constant to the equation, which resulted in:

𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑐1 ∗ ℎ𝑒𝑖𝑔ℎ𝑡 + 𝑐2 ∗ 𝑎𝑔𝑒 + 𝑐3

Which is a linear equation of a plane in 3 dimensional plane.

If our data had yet another attribute, we just need to continue

adding constant and variables pair to our equation.

In the example above, we see several constants in our

equation. These constants will determine the output of the

function, and as such, how accurate the prediction of the model.

As stated before, linear regression goal is to assign a value to

each constant as such the formula can imitate the relationship

between attributes as closely as possible.

There are several methods to find the best constant value,

from using statistical properties of the data, to using the

“Ordinary Least Squares” method. In this paper, we will focus

on one of the possible method to programmatically make a

linear model from a set of data, which is gradient descent.

B. Gradient Descent

Gradient descent is a kind of optimization algorithm; it is

generally used for finding the values of parameters of a function

that will results in the lowest or highest return value. It does this

by repeatedly evaluating the return value of a parameter set in

that function, and generating a better parameter set (resulting in

an even lower/higher result) from the analyzation result.

The way gradient descent generate a better parameter set

from the previous one is by using a concept called gradient,

more generally referred to as derivative. Derivative is a concept

in calculus that can be easily described as the slope at a certain

point of a plane (in a three dimensional space). Imagine a three

dimensional function (𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐) forming some sort of

hill. The derivative of that function will take a coordinate, and

return how much change in z will happen if you moved in the

positive x and y direction from that point.

This in itself is not very useful, but there is another concept

called partial derivative. Compared to full derivative, partial

derivative of x in a three dimensional function used above will

return how much change in z will happen if you moved in the

positive x direction from the given point. By using this

information, we can identify which direction each parameter

should be moved by (smaller or bigger number) in order to

reach the desired output.

Figure 2 Example of Partial Derivative in 3D Plane

source: http://www.solitaryroad.com/c353.html

At point P in the image above, the two straight line forming

a cross are the partial derivative of x and y (where z is the

function output.) In the image the partial derivative of x at point

P is negative (pointing down as the value of x increase.) This

means that if we want to maximize the height of z at point P,

the x value should be decreased, and as we can see in the graph,

the z value is indeed increase to the left of point P.

Now, imagine that we want to maximize the output of a

function, and the partial derivative of x at the current parameter

is positive. We should then increase the value of x for the next

iteration, since it will result in a higher output.

III. METHOD

By viewing linear regression as an optimization method;
where the equation’s constant value is we constantly changed in
order to minimize error; we can use gradient descent to make our
linear model from any data. For this case study we will try and
make the model that represent the relationship between height,
weight and age of human. The linear model for this data is:

ℎ𝑒𝑖𝑔ℎ𝑡 = 𝑐1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 𝑐2 ∗ 𝑎𝑔𝑒 + 𝑐3

To determine the best value for the three constant in the
formula above, we must first declare the error function we want
to minimize. In this case, we will use the average of squared
difference between actual output and the one predicted by the
model for all data instance. We can write this formula into:

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙𝑖)

2

𝑁

𝑖=1

Where N is the amount of data in the training set.
Substituting desired and actual height using the previous linear
model for this data, will result in:

𝐸𝑟𝑟𝑜𝑟 =
1

𝑁
∑(ℎ𝑒𝑖𝑔ℎ𝑡𝑖 − (𝑐1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑐2 ∗ 𝑎𝑔𝑒𝑖 + 𝑐3))2

𝑁

𝑖=1

Lastly, we need to calculate the partial derivative formula of
every constant in the above formula in order to make the gradient
descent algorithm. After some calculation the partial derivative
for all three constant can be defined as such:

𝜕

𝜕𝑐1
(𝐸𝑟𝑟𝑜𝑟) = −

2

𝑁
∑ 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑐1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑐2 ∗ 𝑎𝑔𝑒𝑖 + 𝑐3)

𝑁

𝑖=1

𝜕

𝜕𝑐2
(𝐸𝑟𝑟𝑜𝑟) = −

2

𝑁
∑ 𝑎𝑔𝑒 ∗ (𝑐1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑐2 ∗ 𝑎𝑔𝑒𝑖 + 𝑐3)

𝑁

𝑖=1

𝜕

𝜕𝑐3
(𝐸𝑟𝑟𝑜𝑟) = −

2

𝑁
∑(𝑐1 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑖 + 𝑐2 ∗ 𝑎𝑔𝑒𝑖 + 𝑐3)

𝑁

𝑖=1

 After we know the error formula and the partial derivative
for each constant, the gradient descent algorithm itself is quite
simple. The pseudocode for the implementation used in this case
study is as such:

1. Initialize the constants with a semi-random value

2. Calculate the error of the current model

3. Check if the error change between iteration is too little,
or if too much iteration has been executed

a. Stop if one of the condition is true

b. Output the final model and error value

4. Calculate the partial derivative for all constant

5. Subtract each of the model’s constant with its partial
derivative (to try reaching for the minimum error)
times the learning rate (to prevent model from jumping
over the minimum point)

IV. RESULTS

After implementing the gradient descent algorithm described
above (using python for this experiment), we can supply the
program with training data to generate its model. For this case
study we will use the statistic online computational resource
provided by the University of California which can be accessed
at http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_
HeightsWeights[n]. The data contains 1035 records of heights
(inch), weight (pound) and age of Major League Baseball player.

After several experimentations, we reach the minimum error
for the training data supplied by using constant instantiation of
0, learning rate of 0.0001 and 1000 maximum iteration. The
resulting model from this training is as such:

ℎ𝑒𝑖𝑔ℎ𝑡 = 2.53 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 0.55 ∗ 𝑎𝑔𝑒 − 0.67

The model above yields an average error of 331.73. Since
the error formula is the square of difference, using square root,
we can determine that on average the model’s height prediction
is off by about 18.2 inch. We can also visualize this model and
the data distribution by using a three dimensional graph below:

Figure 3 Scatter Plot and Model Plane Results of Experiment

 Where the blue plane is the linear model of the data, and the
red circles are the instances of the training data.

V. DISCUSSION

An error margin of 18.2 inch is actually not that bad
considering how diverse human weight-height ratio are. Even
so, there is some factor in gradient descent algorithm that may
result in suboptimum model. In this section, we will cover one
of the most probable cause, which is local minimum.

Figure 4 Scatter Plot of 2014 Egyptian Female Weight-Height Data

According to the Demographic and Health Survey (DHS)
source: https://opendata.stackexchange.com/questions/7793/

The error function that our algorithm tried to minimize is

quite complex, forming a four dimensional (there are three input
since we tried to get the values for the constant, not the actual
variables) quadratic equation. Compared to simple equation,
such as an equation that formed a mountain or bowl; no matter
where the initial point is, we will always reach the maximum /
minimum since the partial derivative at all position will point at
the maximum / minimum point.

This, however, is most likely not the case with more complex
function. There is a high chance of several “valley” called local
minimum to exists in our function, but only one is the optimum
solution (lowest value.) Since at every local minimum, the
partial derivative for all variables is positive (pointing upwards),
our algorithm will be stuck inside one of these points according
to the initiation value, not knowing whether or not this point is
the absolute minimum error for the model.

After further experiment with the initiation value, it is
confirmed that different initial value will yield different model,
even if the maximum iteration hadn’t been crossed yet. For
example, an initial constant value of 𝑐1 = 50, 𝑐2 = 0, 𝑐3 =
−100 will yield a model with a better average error of 306.07
(off by about 17.5 inch) even though both had reached had
stopped before the max iteration (reached a minimum point.)
The resulting model is as such:

ℎ𝑒𝑖𝑔ℎ𝑡 = 3.81 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡 + 0.74 ∗ 𝑎𝑔𝑒 − 100.62

There are several methods that exist to mitigate this effect
this, one of such is the stochastic gradient descent; that use
stochastic approximation to try and avoid local minimum. This
method uses only a random part of the training set during
calculating the partial derivative at each step; rather than using
the entire dataset. This way, the variance of parameter update
can be reduced, and may “leap over” local minimum,
converging at the global minimum.

This method also make the algorithm run much faster,
making it more feasible to run a bigger number of iteration
process. However, it is best to lower the learning rate in this
method, since the variance of partial derivative is much higher
than the usual gradient descent; and it may be hard to determine
a good learning rate value without using trial and error method.

VI. CONCLUSIONS

Using gradient descent to implement linear regression in
machine learning is very efficient for the right domain. This
method is also very easy to implement, and can be used as
baseline to the other machine learning method to compare
performance. However, this method is less effective against data
with non-linear relationship and complex data; since the
algorithm may only resulted in a model with error that points
towards a local minimum (rather than the global minimum).

To remedy that, stochastic gradient descent may be used with
lower learning rate and more iteration to try and “skip” the local
minimum in the error function.

REFERENCES

[1] Jason Brownlee (2016) Linear Regression for Machine Learning [Online]
Available: http://machinelearningmastery.com/linear-regression-for-mac
hine-learning/ [Accessed 2 May 2017]

[2] Jason Brownlee (2016) Gradient Descent for Machine Learning [Online]
Available: http://machinelearningmastery.com/gradient-descent-for-mac
hine-learning// [Accessed 2 May 2017]

[3] Matt Nedrich (2014) An Introduction to Gradient Descent and Linear
Regression [Online] Available: https://spin.atomicobject.com/2014/06/
24/gradient-descent-linear-regression/ [Accessed 3 May 2017]

[4] Statistics Online Computational Resource (No date) SOCR Data MLB
HeightsWeights [Online] Available: http://wiki.stat.ucla.edu/socr/index
.php/SOCR_Data_MLB_HeightsWeights [Accessed 1 May 2017]

[5] Unsupervised Feature Learning and Deep Learning (No date)
Optimization: Stochastic Gradient Descent [Online] Available: http://
ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDe
scent/ [Accessed 3 May 2017]

[6] https://en.wikipedia.org/wiki/Linear_regression [Accessed 3 May 2017]
as image sources

[7] http://www.solitaryroad.com/c353.html [Accessed 3 May 2017] as image
sources

[8] https://opendata.stackexchange.com/questions/7793/ [Accessed 3 May
2017] as image sourc

DECLARATION

With this, the writer hereby declare that this paper is
written on his own, not an adaptation, or translation of
someone else's paper, and not the result of plagiarism.

Bandung, 5 May 2017

Fairuz Astra Pratama - 13514104

