

Retrofit as a type-safe REST Client for Android

Development

Albert Logianto 13514046

Informatics Study Programme

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jalan Ganesha 10 Bandung 40132, Indonesia

13514046@std.stei.itb.ac.id

Abstract—Almost everyone this day have a smartphone as

their daily needs. More than half of them is using Android as

their operation system. One important feature for a smartphone

is the ability to connects to the internet. Therefore, Majority of

applications in a smartphone is connected to REST based

webservices. There are many ways to communicate to a REST

webservices. One common method is using httpurlconnection,

which is pretty slow and bad support for scalability. Retrofit

solves that issues by making easy implementation of retrieving

and uploading data (typically JSON) via a REST based

webservice. Retrofit then provides a data converter using POJO

for data serialization to easily map webservices response to Java

Objects. Many popular applications use retrofit because of the

great supports and flexibility in developing Android

Applications.

Keywords—Retrofit; webservices; POJO; Scalability; REST;

http

I. INTRODUCTION

According to PEW Research Center (2017), there are
roughly three-quarters (77%) of American own a smartphone.
Almost all applications in a smartphone will be using internet
to connect to webservices. Webservice is a service that
provides communication between client and server. There can
be many type of structure used in data exchanged between
client and server.

Common architecture used in building a web service is
using REST and SOAP. Roy Fielding first introduce REST in
2000 as a standard in developing web services. REST is more
popular in mobile aspect because of its’ flexibility and
scalability compared to SOAP. One of the most popular data
structure used in REST webservices is JSON (JavaScript
Object Notation). REST web services is an architecture which
provides stateless operation and has a URI (Uniform Resource
Identifiers) to identifies resources needed.

One of the most popular techniques in developing a REST
client in Android is using a framework called Retrofit. In this
technique, the framework provides authentication and
interaction to REST webservices by using OkHttp, which is a
library for sending network requests and handling network
response. The response (typically JSON) from the REST
webservices is converted to a Plain Old Java Object for data

serialization. By using this technique, developing client for
connecting to webservices will be more simple and fast
because every resource in the network response already
handled and parsed by the framework, making it more
straightforward to accessing the data resources retrieved from
the webservices.

In this paper, we present an example of developing a simple
application for user to discover popular movies by fetching
data to a movie database REST API using Retrofit. Retrofit
will be used to handling network request and response between
client and the webservices. Using retrofit will speeds up the
development time because almost all network aspects will be
handled by the framework.

This paper consists of four sections. The first section will
be the introduction. The second section will explain what is a
REST webservices and Retrofit. The third section will discuss
the movie database project. In the last section, the author will
give some conclusion and benefits of using Retrofit in Android
Development.

II. THEORY

A. REST Webservice

First, we describe what is a web service. A web service is a
protocol used in communicating between applications or
server. One of the most popular architecture used in building a
web service is REST. REST, which stands for Representational
State Transfer is an architecture using stateless protocol which
is HTTP for exchanging data in network communication. One
of key aspect in REST web services is mapping every resource
to an URI. There many data structure used in REST for
representing the resource, such as plain text, XML, and JSON.
JSON is one of emerging and most popular format used in
many web services.

REST web services implement HTTP method, which is
GET, POST, PUT, DELETE to represent the type of resource
operation being used. The operation will be also linked to the
URI (Uniform Resource Identifiers) to identify which resource
will be manipulated. In REST architecture, everything will be
treated as a resource. Therefore, REST web services are
designed to be simple, lightweight, fast, and have a great

scalability. So it suits perfectly and popular in developing web
services for mobile application.

B. Retrofit

Retrofit is a type-safe REST/HTTP client for Android, it is
developed by Square. It is a framework that turns HTTP API to
a Java Interface. Typical data exchanged is in JSON format, to
parsed it to POJO, GSON library is commonly used. To
develops mobile application using Retrofit, we need to have
three classes:

1. Model, which is a class to defined the JSON to a POJO

2. Interfaces, to declare set of operations and parameters
used to web services

3. Retrofit.Builder class, to define instance to connect to
an URL endpoint and converting the response to the
model class that has been created.

III. CASE STUDY

Before we begin to use Retrofit for our project, there are
some setups that need to be done. First, make sure our project
has the Internet Permissions in out AndroidManifest.xml file:

Then, we need to add the dependencies to our gradle build
settings which is located in app/build.gradle:

We use GSON library for our project because we are
dealing with JSON format in the web service response.

After the setup is done, we need to create our model classes
based on the response format. There are automated and manual
ways to create the model classes, the author will explain the
automated method. The automated method is using a web site
called jsonschema2pojo (http://www.jsonschema2pojo.org/). In
this case, our URL endpoint will be
https://api.themoviedb.org/3/movie/popular?api_key=<key>
which return a JSON response:

Copy and paste that response to the jsonschema2pojo
textbox. Fill in the package name and the model class name
and make sure we select JSON as the source type and GSON as
the annotation style. The result will look like this.

<manifest
xmlns:android="http://schemas.android.com/a
pk/res/android">

<uses-permission
android:name="android.permission.INTERN
ET" />

</manifest>

dependencies {
 compile 'com.google.code.gson:gson:2.7'

compile
'com.squareup.retrofit2:retrofit:2.1.0'
compile
'com.squareup.retrofit2:converter-
gson:2.1.0'

}

{"page":1,"results":[{"poster_path":"\/tWqi

foYuwLETmmasnGHO7xBjEtt.jpg","adult":false,

"overview":"A live-action adaptation of

Disney's version of the classic 'Beauty and

the Beast' tale of a cursed prince and a

beautiful young woman who helps him break

the spell.","release_date":"2017-03-

16","genre_ids":[14,10749],"id":321612,"ori

ginal_title":"Beauty and the

Beast","original_language":"en","title":"Be

auty and the

Beast","backdrop_path":"\/6aUWe0GSl69wMTSWW

exsorMIvwU.jpg","popularity":114.674355,"vo

te_count":2243,"video":false,"vote_average"

:6.8},{"poster_path":"\/gaHepzSTMkGwsSKAqiB

groSCf07.jpg","adult":false,"overview":"The

Guardians must fight to keep their newfound

family together as they unravel the

mysteries of Peter Quill's true

parentage.","release_date":"2017-04-

24","genre_ids":[35,28,12,878],"id":283995,

"original_title":"Guardians of the Galaxy

Vol.

2","original_language":"en","title":"Guardi

ans of the Galaxy Vol.

2","backdrop_path":"\/8sFWWIolWPm2FQLNt9cSK

pNZJcz.jpg","popularity":105.201927,"vote_c

ount":630,"video":false,"vote_average":7.8}

Figure 1. jsonschema2pojo preview

http://www.jsonschema2pojo.org/
https://api.themoviedb.org/3/movie/popular?api_key=%3ckey

After that, we need to download the file generated by the
jsonschema2pojo by clicking the Zip button. The generated file
should look like this:

This is a Plain Old Java Object converted from the JSON
format. We need to create the interface used in this project to
define the endpoint used and set of operation needed for this
project, which is in this case is to get list of popular movies
from the movieDB API. The interface should look like this:

Basically, we just need a HTTP GET methods to get the list
of popular movies and the parameter of api_key. From the
above methods, the URL endpoint is
https://api.themoviedb.org/3/movie/popular?api_key=<key>.

The next and the last thing we need to do is to create the
Retrofit instance which will link our endpoint and convert it to
POJO. The instance created should look like this:

After creating the three classes needed for the retrofit to
works, in our Android activity class we just need to import
these packages:

To get the parsed response from the web services, we need
to create the object corresponds to the operations which is
getting list of popular movies.

This process of sending the network request to the REST
web services is asynchronous, so it won’t disturb the
application’s main thread which is the UI thread. The result of
this is the process won’t make the UI operation being frozen or
paused. After getting the response, we will need to handle the
things needed if our request is successful. We also need to
handle if the request has failed. The good thing is we don’t

public interface APIService {

 String baseURL =
 "https://api.themoviedb.org/3/movie/;

 @GET("popular")
 Call<Pages>
 getResultPopular(@Query("api_key")
 String api_key);

}

String baseURL =
 "https://api.themoviedb.org/3/movie/;

Retrofit retrofit = new Retrofit.Builder()

 .baseUrl(baseURL)

 .addConverterFactory(

 GsonConverterFactory.create())

 .build();

APIService service =

retrofit.create(APIService.class);

import retrofit2.Call;

import retrofit2.Callback;

import retrofit2.Response;

Call<Pages> responseCall;

responseCall =

APIService.service.getResultPopular(api_ke

y);

responseCall.enqueue(new Callback<Pages>()

{

 @Override

 public void onResponse(Call<Pages>

 call, Response<Pages> response) {

 if (response.isSuccessful()) {

 Pages body = response.body();

 //do your things

 }

 }

 @Override

 public void onFailure(Call<Pages>

 call, Throwable t) {

 //handle the exception if the

 request is failed

 Log.e("Error", t.toString());

 }

});

https://api.themoviedb.org/3/movie/popular?api_key=%3ckey

need to manually check each request is successful or not, it has
been determined automatically by the framework.

 This is the author’s Android apps after developing it using
Retrofit as the REST client for connecting to the movie
database API.

IV. CONCLUSION

Retrofit really provides easy, simple, and flexible
framework for fast development in REST client for Android.
The framework also provides a straightforward method to
accessing resources in web services without any hassle. When
using this framework compared to traditional techniques which
is using httpurlconnection and asynctask, Retrofit provides
better user experience with fast network connection while still
maintaining responsive user interface. In a benchmark

concluded by INSTRUCTURE (2013), Retrofit provides faster
response hitting 50% to 90% faster comparing to asynctask
method. Retrofit also have authentication features for web
services implementing authentication for the requests. Using
retrofit really create a stable, fast, and great scalability in
developing REST client in Android application.

ACKNOWLEDGMENT

I would like to thank to God for letting me to finish this
paper without any problems. The author would also thank to
everybody involved in the making of this paper. The last and
foremost, the author also really appreciate and grateful to all
the IF3280 course lecturer, Dr. Ir. Rinaldi Munir, MT, Dr. Eng.
Ayu Purwarianti, ST., MT, and Dessi Puji Lestari
ST,M.Eng.,Ph.D. for all the lesson and guidance throughout
this great semester.

REFERENCES

[1] Fielding, R. T. (2000). Architectural Styles and the Design of Network-

based Software Architectures (Doctoral dissertation, University of
California, Irvine). Retrieved from
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.
pdf

[2] Haas, H., & Brown, A. (2004). W3C Working Group Note 11 February
2004. Retrieved from https://www.w3.org/TR/2004/NOTE-ws-gloss-
20040211

[3] Codepath (2017, March 12). Consuming APIs with Retrofit. Retrieved
from https://guides.codepath.com/android/Consuming-APIs-with-
Retrofit

[4] Instructure Tech (2013, December 9). Android Async HTTP Clients:
Volley vs Retrofit. Retrieved from
http://instructure.github.io/blog/2013/12/09/volley-vs-retrofit/

STATEMENT

I hereby declare that this paper is my own work not a copy,
translation, no plagiarism of somebody else’s work.

Bandung, May 5th 2017

Albert Logianto
 13514046

Figure 2. Author’s movie database application preview

