

Analyzing Binaries Using angr

Jason Jeremy Iman 13514058

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia

13514058@std.stei.itb.ac.id

Abstract—Binaries are commonly found within the field of

Informatics. However, analyzing and understanding one can be

difficult. In order to simplifies and automates the analysis of a

binary, angr, a binary analysis framework, can be used. angr
provides a semi-automatic concrete and symbolic approach of

analyzing a binary.

Keywords—binary; angr; analysis;

I. INTRODUCTION

Binaries which often referenced as executables are files that

causes computer to perform a set of instructions. These files

contain traditional machine code or bytecode that is directly
understandable by computers as opposed to other files which

require parsing to be meaningful. There are many types of
computer architecture but most of them have machine code that

is written with a language called assembly. However,
difference architecture does have multiple differences of

instruction sets and registers of the language.

Binaries are found everywhere within a machine. Operating

systems, command-line, and even softwares consist of binaries.

However, as much as we use binaries, understanding a binary
can be difficult. Most programs and softwares are coded using

a higher-level language in which even the coder can not
understand the binary. While in some cases analyzing a binary

is not a necessities as proofreading the source code is
considered enough, there are cases of missing source code and

bugs within binaries. As such, it is very important to be able to

analyze a binary.

There are two ways of analyzing a binary, statically by

reading the code and dynamically by observing the execution
of the binary. These techniques are often combined in order to

fully understand a binary. However, most of the time, those
steps are done manually. While it is possible for humans to

analyze a binary, it would not be as consistent as machines. In

order to do that, students from computer lab of UC Berkeley
created a framework called angr that automatically analyze a

binary statically and dynamically.

angr is capable of analyzing a binary through concrete and

symbolic execution in which each variable is treated as
symbolic variable along a concrete execution path. angr can

also create a control-flow graph in order to understand the
binary better. Those capabilities of angr combined with static

analysis allows angr to find flaws, vulnerabilities, and specific

exeution paths within a binary.

II. THEORY

A. Assembly

Assembly often abbreviated asm, is a low-level
programming language. As it directly communicate with

hardwares, this language varies with computer architecture.

Most of the variations, if not all, follow the same rules which
are

1. use architectural registers to store data,

2. use flags to indicate result of computations,

3. have segments that indicate the type of data stored,

4. written with binary code,

5. each binary code can be interpreted as instructions

by the computer architecture.

These are some instructions of assembly language of

x86/IA-32 architecture

1. mov var1 var2, move a copy of var2 to var1

2. add var1 var2, add var2 to var1

3. lea var1 var2, copy the address of var2 to var1

4. push var1, place var1 on top of stack

The variable referenced as var1 and var2 in the example
above can be changed into registers such as eax, ebx, and esp

or addresses such as 0x6042, 0x4026, and 0x8048. Each of the
instructions have a specific address in order for the machine to

keep track of the execution.

B. angr

angr is a python framework for analyzing binaries . angr
combines static, dynamic, and symbolic approach to create a

consistent binary analysis. angr is capable of analyzing binary
with certain instructions

1. loading the binary,

2. generate a path group object,

0x0000000000400ee0 <+0>: sub rsp,0x8

0x0000000000400ee4 <+4>: mov esi,0x402400

0x0000000000400ee9 <+9>: call 0x401338

0x0000000000400eee <+14>: test eax,eax

0x0000000000400ef0 <+16>: je 0x400ef7

0x0000000000400ef2 <+18>: call 0x40143a

0x0000000000400ef7 <+23>: add rsp,0x8

0x0000000000400efb <+27>: ret

...

0x0000000000400f05 <+9>: call 0x40145c

0x0000000000400f0a <+14>: cmp DWORD PTR

[rsp],0x1

0x0000000000400f0e <+18>: je 0x400f30

0x0000000000400f10 <+20>: call 0x40143a

0x0000000000400f15 <+25>: jmp 0x400f30

0x0000000000400f17 <+27>: mov eax, DWORD PTR

[rbx-0x4]

0x0000000000400f1a <+30>: add eax,eax

0x0000000000400f1c <+32>: cmp DWORD PTR

[rbx],eax

0x0000000000400f1e <+34>: je 0x400f25

0x0000000000400f20 <+36>: call 0x40143a

0x0000000000400f25 <+41>: add rbx,0x4

0x0000000000400f29 <+45>: cmp rbx,rbp

0x0000000000400f2c <+48>: jne 0x400f17

...

...

0x0000000000400f51 <+14>: mov esi,0x4025cf

0x0000000000400f56 <+19>: mov eax,0x0

0x0000000000400f5b <+24>: call 0x400bf0

0x0000000000400f60 <+29>: cmp eax,0x1

0x0000000000400f63 <+32>: jg 0x400f6a

0x0000000000400f65 <+34>: call 0x40143a

0x0000000000400f6a <+39>: cmp DWORD PTR

[rsp+0x8],0x7

...

0x0000000000400fb7 <+116>:jmp 0x400fbe

0x0000000000400fb9 <+118>:mov eax,0x137

0x0000000000400fbe <+123>:cmp eax,DWORD PTR

[rsp+0xc]

0x0000000000400fc2 <+127>:je 0x400fc9

0x0000000000400fc4 <+129>:call 0x40143a

...

0x0000000000401024 <+24>: call 0x400bf0

0x0000000000401029 <+29>: cmp eax,0x2

0x000000000040102c <+32>: jne 0x401035

0x000000000040102e <+34>: cmp DWORD PTR

[rsp+0x8],0xe

0x0000000000401033 <+39>: jbe 0x40103a

0x0000000000401035 <+41>: call 0x40143a

0x000000000040103a <+46>: mov edx,0xe

0x000000000040103f <+51>: mov esi,0x0

0x0000000000401044 <+56>: mov edi,DWORD PTR

[rsp+0x8]

0x0000000000401048 <+60>: call 0x400fce

<func4>

0x000000000040104d <+65>: test eax,eax

0x000000000040104f <+67>: jne 0x401058

0x0000000000401051 <+69>: cmp DWORD PTR

[rsp+0xc],0x0

0x0000000000401056 <+74>: je 0x40105d

3. exploring and analysing path group,

4. adding constraints,

5. adding hooks to functions,

6. manipulate states.

The execution contains states consisting of binary’s
registers, memory content, files, and environment condition.

III. CASE STUDIES

In order to learn how angr works, several case studies will
be tested. Each of the analysis and approach will be presented

below.

A. Carnegie Mellon University’s Binary Bomb

CMU’s binary bomb consists of 6 phases in which for each
phase student must prevent the execution to reach function

called bomb_explode by providing correct input. This
assignment is supposed to be solve by reading the binary’s
assembly. First until fourth phase’s assembly code snippets
will be shown and briefly explained below

 Phase 1

The first phase calls function of read_string at

0x401338 and compare it with string provided at
address of 0x402400. If it is not equal then call

bomb_explode.

 Phase 2

The second phase calls function of read_six_numbers

at and check if the first number is 1 and the subsequent
number is 2 times the previous number within the loop

at the address of 0x400f17-0x400f2c. Thus the correct
input would be 1 2 4 8 16 32.

 Phase 3

The third phase calls function of scanf at 0x400bf0.

This question is about jump table, so the first input of

scanf is used to jump to certain address and the second
input is checked with specific number such as written

at address 0x400fbe. There are multiple correct
solution to this phase.

 Phase 4

This fourth phase calls function of scanf at 0x400bf0.
It scans 2 number and checks if the output of first

number passed on to func4 (0x400fce) is equal to 0 and

second number. The func4 itself is a variation of binary

search with the output being the number of search

required for the first argument within the range of 0 to
14.

In order to solve these problems using angr first we need to
load the binary to angr. It can be done using this line of code

proj = angr.Project('bomb')

After the binary is successfully loaded, set the starting position

of execution, position to avoid, and end position. For the first
phase these would be the line of code needed

start = 0x400ee0

bomb_explode = 0x40143a

end = 0x400ef7

Then initiate the starting position as the start variable

state = proj.factory.blank_state(addr=start)

After that symbolicly link the input with address of string

arg = state.se.BVS("string", 8 * 128)

state.memory.store(0x603780, arg)

state.add_constraints(state.regs.rdi == bind_addr)

After all the binding and state set, run the program with the

constraints of bomb_explode

path = proj.factory.path(state=state)

ex = proj.surveyors.Explorer(start=path,
find=(end,),avoid=(bomb_explode,),

enable_veritesting=True)

ex.run()

Running the code for the first phase outputs “Border

relations with Canada have never been better.”, a valid answer
in about 2 minutes time. Solving the second phase with a

similar code with the difference of symbolic link being with 6
integers provide an output of “1 2 4 6 8 16 32”, a valid output
in about 5 seconds.

This shows that symbolic analysis performs better when

arithmetic operation is used. In the second phase, the program

mathematically calculate which number is supposed to be next
as opposed to trying each possible character in the first phase.

The third phase have multiple possible solution. In order to
get all of the solutions the program needs to be changed. First,

it needs to have all corect path stored. One of the possible
solution to that is to use a queue. The code execution is

changed to do a while loop until the queue is empty with the
queue is filled with all new possible states.

The solution provided turns out creating a big amount of

possible solution path which in turns make the program use a
big amount of memory and takes a lot of time. In order to solve

it the program needs to prune the subset of all solution path
inside the queue. Implementing that reduces the executing time

to about 10 seconds.

The fourth phase consist of passing an input to a recursive

function. There are no constraints that can be added to this

phase. As such, solving this phase using the first phase’s
program would be the optimal approach. The program found a

valid answer in about 5 minutes time.

As recursive functions are called multiple times, functions

that have an infinite or big recursive depth will take a lot of
time to solve by angr. A similar program with phase 4 with

changes in the func4 minimum and maximum value to 0 and 50
is tested using the code for phase 4. This code found a valid

answer in more than 10 minutes time.

In order to solve the problem angr actually provide a

parameter called LAZY_SOLVES that can be removed.

Removing the parameter, using

remove_option={simuvex.o.LAZY_SOLVES}

optimizes the runtime. This makes the path exploration more
efficient by ensuring unsatifiable path are not traversed.

IV. CONCLUSION

angr provides a way of analyzing a binary. Certain types of

problems such as mathematical comparison can be solved by
angr automatically and effectively. However, some problems

such as recursion and string matching is more effectively solve
manually. Some others are not solvable by angr as it have a

huge amount of possible states. As such, angr is best used on a
complex binary that consist of many mathematical calculations

and comparisons.

ACKNOWLEDGMENT

First and foremost, praises and thanks to God the Almighty
for His blessings throughout writing this paper. I would like to

thank my parents for guiding me up until this point. I also

would like to express my sincere gratitude to Dr. Ir. Rinaldi
Munir, MT, Dr. Eng. Ayu Purwarianti, ST.,MT, and Dessi Puji

Lestari ST,M.Eng.,Ph.D. for the guidance throughout the
semester in IF3280 course.

REFERENCES

[1] Shoshitaishvili, Yan et al, “SoK: (State of) The Art of War: Offensive
Techniques in Binary Analysis,” IEEE Symposium on Security and
Privacy, 2016.

[2] Stephens, Nick et al, “Driller: Augmenting Fuzzing Through Selective
Symbolic Execution,” NDSS, 2016.

[3] Shoshitaishvili, Yan et al, “Firmalice - Automatic Detection of
Authentication Bypass Vulnerabilities in Binary Firmware,” NDSS,
2015.

[4] Intel Architecture Software Developer's Manual, Volume 2: Instruction
Set Reference. Intel Corporation. 1999. pp. 442 and 35. Retrieved 18
November 2010.

STATEMENT

I hereby declare that this paper is my own work and not a
copy, translation, nor plagiarism of somebody else’s work.

Bandung, May 5 2017

Jason Jeremy Iman 13514058

