
Exploration on Multiplayer Networking Capabilities

in Unity using Photon Unity Networking Cloud API

Muhammad Reifiza

School of Electronics Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia

13514103@std.stei.itb.ac.id

Abstract—Multiplayer game is massively popular today. With

the availability of modern game engine such as Unity, it’s easier to

develop a game than 15 years ago. The challenge to create a proper

and engaging multiplayer still exist, but at least in Unity there are

quite plenty of tools to aid development of multiplayer game. In

this paper, an exploration of an existing tool for making

development multiplayer game easier without worrying about

building complex networking system will be presented and

discussed.

Keywords—multiplayer; game; development; api; exploration;

unity; photon

I. INTRODUCTION

Nowadays, multiplayer games is massively and increasingly
popular worldwide. Branches of multiplayer games also
incredibly popular and some have tremendous amount of daily
active users. Notable example includes Defense of The Ancient
2, World Of Warcraft, and League of Legends. Multiplayer
games are thought to be more engaging to the player than single
player games because player is socializing to other players, have
competition factor in it, and overall made achievement
accomplishment more satisfying and made players more
immersed as they play [1,2,3]. These led to another conclusion
that multiplayer aspect of multiplayer games more likely to play
much more important role than any other aspects, thus driving
player to willingly learn complex gameplay mechanics, enhance
player persistence and enjoyment, and further might spending
dollars in order to win [1,3]. Hence, developing and marketing a
multiplayer game seems to be more tempting than developing
and marketing a single player game in today gaming industry.

However, developing a software architecture for multiplayer
games from scrath without the use of game engine and additional
tools could be incredibly challenging and more expensive. There
are plenty aspects to be carefully designed and implemented. For
example, in order to create a simple multiplayer games, there
must be a host and a mechanism to control the players. The
mechanism includes controlling state of players, state of
network, data flow in gameplay, et cetera. Scalability concerns
could present, as well as network and security problems.
Network problem includes dealing with network latency might
be high, reliability might be not so reliable, limited bandwidth,

etc. Tackling these problems might be more of headache and
there could be other problems not mentioned yet.

Fortunately, there are exist game engines and tools to make
development of multiplayer game much easier. For this
exploration project, I’ll be using Unity as game engine. There
are at least two APIs to develop multiplayer game in Unity,
built-in UNet API which requires Unity Multiplayer Services
and Photon Unity Networking which has existed before Unet
API. As the title says, I’ll use the latter for this exploration
project.

This paper is divided into four section. Section I explains
motivation behind the exploration project and brief introduction,
Section II will briefly explain PUN Cloud API basics, Section
III will explain how I explore the PUN Cloud API, and the last
section will show the result of exploration and conclude the
exploration project.

II. PUN CLOUD API BASICS

According to its official documentation, Photon is a real-
time multiplayer game development framework that is fast, lean
and flexible [4]. The PUN Cloud API consist of two main parts,
one located in the client side, and another located in PUN-owned
servers. The source code of client side API can be accessed and
easily readable by developers, but source code of the server side
can’t be accessed, making it somewhat half open source.

Photon Unity Networking API is intended for realtime room-
based multiplayer game. This means many players can connect
to PUN servers, but are separated based on room, application ID,
and application version. Players that are in the same room can
communicate to each other, but players in the different rooms
can’t communicate. A room can be set to a limited number of
player and its visibility can be set to public or private. If a room
visibility is set to private, then it can’t be searchable, thus player
who want to join in must know the room name. A collection of
rooms resides in a lobby, and an application can have multiple
lobbies in PUN Cloud Server. All of these information is
managed in PUN Cloud Server, hence matchmaking also takes
place in server side of API.

III. THE EXPLORATION PROCESS

This exploration project is based on Photon Unity
Networking API official documentation and tutorial. Tutorial
used mainly is tutorial PUN Basics [5]. Along the exploration, I
retyped the original code, had changed several parts of the code,
experimenting with other methods, figuring out what’s wrong,
before changed it again to its original.

The exploration project is very simple. Player can control an
anthromorphic robot with W/ArrowUp to run north,
A/ArrowLeft to run east, and D/ArrowRight to run west. The
robot can jump while it runs, but not when it is in idle position.
The robot can shoot laser beams and explore an arena with
predetermined size. Another robot may join into or out from the
same arena and the arena will adapt its size according to number
of the robots. If a robot is in contact with laser beam, then its
health is reduced. An arena can contain up to 4 robots at once.

 Before a player can join an arena, the player must first enter
a desired nickname. This nickname is stored in local machine
registry key, and will remembered next time the player launch
the game. The original code will take the player into an arbitrary
room available and if there’s no available room, a new room will
be created. It’s actually possible to not take the player into an
arbitrary room. First, we must retrieve all of available room with
visibility set to public, display it on the player machine nicely so
the player can then select any of it, or if the player knows a room
name, just provide a form field to let player enter it and if the
room is really exist then the player will enter the room. All of
these approaches are pretty straightforward, but one thing to
keep in mind is once all player has left the room, it will be
destroyed and won’t exist anymore.

Once gameplay has started, every player can see other
players in the arena and every player only able to control its own
robot. Every player’s robot is attached to a PhotonView class
and instantiated on the network by Photon by calling method
PhotonNetwork.Instantiate(arguments). What this method
does is player’s robot is spawned on every player’s machine
connected to the same room, distiguished by its id. So, if there
are two players in the room, then every machines has exactly
two instances of robots. Hence, if not handled properly, a player
can control all robots and every player can do the same, leading
to catastrophic situation. PUN Cloud API has ownership concept
to avoid this situation that is simpler to grasp than ownership in
UNet API, because in Photon there’s only two: isMine and
isMasterClient. I use the isMine attribute to avoid the
situation, as well as in original code. isMine attribute is used to
check whether a robot instance is not originated from the
network, while isMasterClient is used to check whether a
player is the one who create the room or the one who is in the
room for the longest time.

Every player can also see other players’ robot’s movements,
health, and laser beams, thus introducing the needs of data
synchronization. There are at least 4 ways to achieve this:
Photon built-in script; serializing PhotonView via method
callback; Remote Procedure Calls; and RaiseEvents. Because
robot movement data is challenging to handle manually, Photon
built-in scripts are used in collaboration with other scripts.
Health and laser beams are only primitive data types, so

serializing PhotonView option is used. Using Remote Procedure
Calls and RaiseEvents isn’t the best option though as it only
added unnecessary complexity because all the data that needs to
be synchronized is the same across the network, and each data
are updated rather frequently.

After several attempts of debugging, the game is deployed
into a Windows PC with a working internet connection, then
multiple instances of the game are executed in parralel.

IV. CONCLUSION

The game works as expected. Player in upperleft window
only able to control one instance of robot, as well as player in
other windows. Every player can see other’s robot and its
movement. The arena is adapting its size based on the number
of players. Overall works great, but there’s a small notable lag
occurred.

PUN Cloud API offers a straight-forward and easy to use
tools in combination with Unity Engine to develop a multiplayer
game. There are several differences between PUN Cloud API
and the built-in Unity Networking API (UNet API). One notable
difference is PUN Cloud API is always connected to dedicated
server whereas UNet API uses one of player’s machine to host a
room for multiplayer game, thus if the player’s machine used as
host crash then the game is lost too. Both API doesn’t offer any
way to store persistent data in their servers and developer still
need a dedicated host server to store persistent data.

ACKNOWLEDGMENT

I thank to Allah S.W.T. for giving me health and chances to
complete this task, and I also being grateful to all my lecturers,
especially Mr. Rinaldi, Mrs. Ayu, and Mrs. Dessi. Thank you.

REFERENCES

[1] Boyle, A.E.,Connolly, M.T., Hainey, T., & Boyle, M.J. “Engagement in
digital entertainment games: A systematic review” in Computers in
Human Behavior, vol. 28. Elsevier, 2012, pp. 771-780

[2] Preece, J., Rogers, Y., Sharp, H. Interaction Design: Beyond Human-
Computer Interaction Fourth Edition. Chicester: John Wiley & Sons, 2015

[3] Kellar, M., Watters, C., Duffy, J. Motivational factors in game play in two
user Groups. 2005

[4] http://doc-api.photonengine.com/en/pun/current/

[5] https://doc.photonengine.com/en-us/pun/current/tutorials/pun-basics-
tutorial/

Figure 1. Three instances of deployed game being run

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 5 Mei 2017

Muhammad Reifiza / 13514103

