
IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

Develop Chat Room Application

with Node.js and Socket.IO

Ade Yusuf Rahardian - 13514079

Informatics Undergraduate Program

School of Electrical Engineering and Informatics

Bandung Institute of Technology, Jl. Ganesha 10 Bandung 40132, Indonesia

13514079@std.stei.itb.ac.id

Abstract—Node.js is a server-side platform built on Google

Chrome's JavaScript Engine (V8 Engine). Node.js becomes

famous because its asynchrounous property and very fast in code

execution. Socket.IO enables real-time bidirectional event-based

communication. By using these two technologies, build realtime

applications would be easy. This paper explains how chat room

can be built with asynchrounous development by using Node.js

and Socket.IO

Keywords—node js; socket io; asynchronous; chat room;

javascript

I. INTRODUCTION

Using popular stack technology like LAMP (Linux,
Apache, MySQL, PHP) to build real-time application is very
hard, because it should keep track of timestamps and poll the
server for changes. Besides that, the final application would be
very slow. Socket is one of the solution for real-time
application, providing a two-way communication channel
between a client and a server.

Nowadays, we often hear about Node.js. It’s very popular
among web developers as well as Internet of Things specialists.
Based on http://nodejs.org, “Node.js is a JavaScript runtime
built on Chrome’s V8 JavaScript engine. Node.js uses an
event-driven, non-blocking I/O model that makes it lightweight
and efficient. Node.js package ecosystem, npm, is the largest
ecosystem of open source libraries in the world.”

You can easily bring the JavaScript techniques you’ve
learned to Node.js. Node.js is fast, event-driven, and
lightweight but the greatest benefit of using Node.js is
asynchronous programming.

Socket.IO is a javascript library for realtime web
applications, enabling two-way communication from the server
side and the client side. Some of its uses are to create chat
application, screen sharing, webRTC, and many more.

The purpose of this paper is to explain how asynchrounous
development using Node.js by creating a simple event-driven
chat room application that uses Socket.IO to provide a layer of
abstraction over WebSocket and other transports for both
Node.js and client-side Javascript.

II. LITERATURE STUDY

A. Asynchrounous Programming

Asynchrounous programming is not about threading, it is
about the form of execution. Asynchrounous programming is a
form of input/output processing that permits other processing
to continue before the transmission has finished. Figure 1.
shows how asynchrounous programming is different from
synchrounous programming.

Figure 1. Synchrounous vs Asynchrounous[1]

B. Callback Function

In some programming languages when we do function A,

we have to wait until function A is finished before we can do

function B. With Node.js, it can handle this situation

differently. It will do the same things and later when it is done,

it will call the callback function. This callback function will

see if A’s task has been completed or not, and it won’t wait for

task A to finish to do task B. In other words, Node.js can

handle multiple requests simultaneously.

IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

III. THE PROPOSED METHOD

A. Serving HTTP and WebSocket

HTTP will be used to deliver the client-side things

(HTML, CSS, and client-side Javascript). It’s needed to set

things up in the user’s browser. Node can easily handle

simultaneously handling HTTP and WebSocket within a

single application, illustration can be seen at Figure 2.

Figure 2. Serving HTTP and WebSocket using a single TCP/IP

port[2]

From Figure 2., the left figure happens when user arrives at

the chat application website. Meanwhile, the right figure

happens repeteadly while user chats.

B. Application File Structure

Figure 3. Application File Structure

In this project (see Appendix A), the main application file

will go directly in the root of directory. Server-side logic

(chat_server.js) will be placed in the lib subdirectory. Client-

side logic will be placed in the public subdirectory. Within

public subdirectory, there are javascripts and stylesheets

subdirectory. All application’s dependencies will be placed in

node_modules subdirectory.

C. Application Events and Scenarios

There are some application events and scenarios that

should be handled by helper function in this application. These

are types of scenarios and events:

1. Guest name assignment

When a user first connects to the server, the user needs

a name to distinguish them from other member.

2. Room-change requests

With this helper function, user should be able to know

in which room they are and let them know what other

users are in the room and let other users know that the

user join in the room.

3. Name-change requests

In this application, user is allowed to request a name-

change.

4. Sending chat messages

When a user sends a chat, the user will emit an event

indicating the room where the message will be sent

and the chat text. After that, the server will broadcast

the message to all users in that room.

5. Room creation

With this helper function, user is allowed to join an

existing room or create a room (if the room doesn’t

exist)

6. User disconnection.

In this application, user will be removed from server’s

data if the user leaves the chat application.

IV. EXPERIMENT RESULTS

To start the main application file, we need to run server.js

in the root of directory by typing node server.js in the

command prompt. When starting the application, a user is

automatically assigned a guest name, but they can change it by

entering a command.

Figure 4. Starting the Application

There are two commands:

1. /nick [username] to change current username

2. /join [room name] to join spesific room (if

exists) or create a room (if the room doesn’t exist).

IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

When joining or creating a room, the new room name will

be shown in the horizontal bar at the top of the chat

application. The room will also be included in the list of

available rooms to the right of the chat message area.

Figure 5. Overall Application Interface

Figure 6. shows how the user interface is shown for person

A interacting with person B and vice versa.

Figure 6. A’s interface (left) and B’s interface (right)

V. CONCLUSION

The author have performed some experiments and the
results was impressive. The application shows how Node can
simultaneously serve conventional HTTP data (like static files)
and real-time data (chat messages) quickly. It also shows how
Node applications can be organized easily.

VI. APPENDIX

Appendix A – Chat Room with Node.js and Socket.IO

 Source code can be seen at

https://github.com/adeyura/multiroom-chat

VII. ACKNOWLEDGEMENT

The author would like to express his gratitude to Mr.

Rinaldi Munir, Mrs. Ayu Purwarianti, and Mrs. Dessi Puji

Lestari for their guidances in Socio-Informatics and

Professionalism course. The author would like to thank his

friend who supported him to finish this paper. Last but not

least, much gratitude is given to all of those who helped and

supported the author either directly or indirectly.

REFERENCES

[1] http://blogs.quovantis.com/wp-content/uploads/2015/08/Synchronous-

vs.-asynchronous.jpg, accessed on May 4th 2017.

[2] Cantelon, M., Harter, M., Holowaychuk, TJ., Rajlich, N. (2014). Node.js
IN ACTION. Shelter Island, New York: Mannings.

DECLARATION

I hereby declare that this paper is my own, not an adaption or

a translation of someone else’s paper, and not plagiarism.

Bandung, May 5th 2017

Ade Yusuf Rahardian (13514079)

