JOURNAL OF IATgX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012

User Management in Laravel

Christian Anthony Setyawan 13514085
Teknik Informatika, Institut Teknologi Bandung
canthonysetyawan@gmail.com

Abstract—User management in Laravel is good, but
not great. Laravel provides Authentication module to
manage user login and authentication. The problem
is that Authentication module doesn’t support role
model in users, eg. admin, normal user, user with
more authority than normal user, etc. Entrust solves
that(https://github.com/Zizaco/entrust). Entrust is a
succinct and flexible way to add Role-based Permis-
sions to Laravel.

Index Terms—Laravel, PHP, user management, role-
based user, additional package.

I. INTRODUCTION

web application framework is a software framework

that is designed to support the development of
dynamic websites, web applications and web services. The
framework aims to alleviate the overhead associated with
common activities performed in Web development.

Laravel is a web application framework with expressive,
elegant syntax. Laravel attempts to take the pain out of
development by easing common tasks used in the majority
of web projects, such as authentication, routing, sessions,
and caching.

Laravel makes implementing authentication very simple.
In fact, almost everything is configured out of the box.
At its core, Laravel’s authentication facilities are made up
of "guards” and "providers”. Guards define how users are
authenticated for each request. For example, Laravel ships
with a session guard which maintains state using session
storage and cookies.

Unfortunately, Laravel doesn’t ship with role and per-
mission management. Entrust solves that. Entrust is a
succinct and flexible way to add Role-based Permissions
to Laravel 5. This package provides a flexible way to add
Role-based Permissions to Laravel

II. ENTRUST PACKAGE
A. Installation

Before installing Entrust package, Laravel and PHP must
be installed first. Then after creating a new app in Lar-
avel, Entrust package can be installed. To install Entrust
package:

1) Add the following to composer.json:
"zizaco/entrust": "5.2.x-dev"

Then run
$ composer update
2) Open config/app.php and add the following to the
providers array:
Zizaco\Entrust\EntrustServiceProvider: :class,
3) In the same config/app.php and add the following
to the aliases array:
'Entrust’ =>
— Zizaco\Entrust\EntrustFacade: :class,
4) Run the command below to publish the package
config file config/entrust.php:
$ php artisan vendor:publish
5) Open config/auth.php and add the following to it:
'providers' => [
'users' => [
'driver' => 'eloquent',
'model' =>
— Namespace\0f\Your\User\Model\User: :class,
'table' => 'users',
1,
1,

III. CONFIGURATION

Set the property values in the config/auth.php.
These values will be used by entrust to refer to the correct
user table and model.

To further customize table names and model namespaces,
edit the config/entrust.php.

1) User relation to roles: Now generate the Entrust migra-
tion:

php artisan entrust:migration

It will generate the <timestamp>_entrust_setup_tables.php

migration.
You may now run it with the artisan migrate command:

php artisan migrate

After the migration, four new tables will be present:

e roles — stores role records

e permissions — stores permission records

e role_user — stores many-to-many relations between
roles and users

e permission_role — stores many-to-many relations
between roles and permissions

http://laravel.com/docs/4.2/eloquent#many-to-many
http://laravel.com/docs/4.2/eloquent#many-to-many

JOURNAL OF IATgX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012

a) Role:

Create a Role model inside app/models/Role.php using
the following example:

<7php namespace App;
use Zizaco\Entrust\EntrustRole;

class Role extends EntrustRole
{
}

The Role model has three main attributes:

o name — Unique name for the Role, used for looking up
role information in the application layer. For example:
“admin”, “owner”, “employee”.

e display_name — Human readable name for the Role.
Not necessarily unique and optional. For example:
“User Administrator”, “Project Owner”, “Widget Co.
Employee”.

e description — A more detailed explanation of what
the Role does. Also optional.

Both display_name and description are optional; their
fields are nullable in the database.

b) Permission:

Create a Permission model inside
app/models/Permission.php using the following
example:

<?php namespace App;
use Zizaco\Entrust\EntrustPermission;

class Permission extends EntrustPermission
}

The Permission model has the same three attributes as
the Role:

e name — Unique name for the permission, used for
looking up permission information in the application
layer. For example: “create-post”, “edit-user”, “post-
payment”, “mailing-list-subscribe”.

e display_name — Human readable name for the per-
mission. Not necessarily unique and optional. For
example “Create Posts”, “Edit Users”, “Post Pay-
ments”, “Subscribe to mailing list”.

e description — A more detailed explanation of the
Permission.

In general, it may be helpful to think of the last two
attributes in the form of a sentence: “The permission
display_name allows a user to description.”

c) User:

Next, use the EntrustUserTrait trait in your existing
User model. For example:

<?php
use Zizaco\Entrust\Traits\EntrustUserTrait;

class User extends Eloquent

{

use EntrustUserTrait;

}

This will enable the relation with Role and add
the following methods roles(), hasRole($name),
can($permission), and ability($roles,
$permissions, $options) within your User model.

Don’t forget to dump composer autoload

composer dump-autoload

IV. USAGE
Let’s start by creating the following Roles and
Permissions:
$owner = new Role();

$owner—>name 'owner';
$owner->display_name =

$owner->description

'User is the owner of a given project'; // optional

$owner->save() ;

$admin = new Role();
$admin->name
$admin->display_name
'User Administrator'; // optional
$admin->description =

'User is allowed to manage and edit other users';
// optional

$admin->save () ;

'admin';

Next, with both roles created let’s assign them to the
users.
Thanks to the HasRole trait this is as easy as:

$user = User::where('username', '=', 'michele')

->first();

// role attach alias
$user—->attachRole($admin) ;
// parameter can be an Role object, array, or td

// or eloquent's original technique
$user->roles()->attach($admin->id); // id only

Now we just need to add permissions to those Roles:

$createPost = new Permission();
$createPost->name 'create-post';
$createPost->display_name = 'Create Posts';
// optional

'"Project Owner'; // optional

JOURNAL OF IATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 3

// Allow a user to... You can also use placeholders (wildcards) to check any
$createPost->description = matching permission by doing:
'create new blog posts'; // optional

match any admin permission
$createPost->save(); /7 y)

$user->can("admin.*"); // true

editUser = new Permission();
$ O // match any permisston about users

$editUser->name = 'edit-user';

_> U* n . t
$editUser->display_name = $user—>can("*_users"); // true
'Edit Users'; // optional b) User ability:
// Allow a user to... . .
$editUser->description = 'edit existing users'; More advanced checking can be done using the awesome

ability function.

// optional . .o .
P It takes in three parameters (roles, permissions, options):

$editUser->save() ;

e roles is a set of roles to check.

$admin->attachPermission($createPost) ; o permissions is a set of permissions to check.

$owner->attachPermissions(array Either of the roles or permissions variable can be a comma

($createPost, $editUser)); separated string or array:

a) Checking for Roles & Permissions: $user->ability(array('admin', 'owner'),
array('create-post', 'edit-user'));

Now we can check for roles and permissions simply by

doing: // or

$user->hasRole('owner'); // false

$user->hasRole('admin'); // true $user->ability('admin,owner', 'create-post,edit-user');

$user->can('edit-user'); // false This will check whether the user has any of the provided

$user->can('create-post'); // true roles and permissions.

In this case it will return true since the user is an admin

Both hasRole() and can() can receive an array of roles o
and has the create-post permission.

& permissions to check:

$user->hasRole ([owner', 'admin'l); /) true The third parameter is an options array:

$user->can(['edit-user', 'create-post'l); // true $options = array(

'validate_all' => true | false (Default: false),
'return_type' => boolean | array | both (
Default: boolean)

By default, if any of the roles or permissions are present

for a user then the method will return true.

Passing true as a second parameter instructs the method)

to require all of the items: ’

$user->hasRole(['owner', 'admin'l): e validate_all is a boolean flag to set whether to

/) true check all the values for true, or to return true if at
least one role or permission is matched.

e return_type specifies whether to return a boolean,
array of checked values, or both in an array.

$user->hasRole(['owner', 'admin'], true);
// false, user does not have admin role
$user->can(['edit-user', 'create-post']);
/7 true Here is an example output:
$user->can(['edit-user', 'create-post'], true);

// false, user does mot have edit-user permission $optioms = array(
'validate_all' => true,
You can have as many Roles as you want for each User 'return_type' => 'both'

and vice versa.);

The Entrust class has shortcuts to both can() and

hasRole() for the currently logged in user: list($validate, $allValidations) = $user—>ability(

array('admin', 'owner'),

Entrust::hasRole('role-name'); array('create-post', 'edit-user'),
Entrust::can('permission-name'); $options

);
// is identical to

var_dump ($validate);
Auth: :user () ->hasRole('role-name'); // bool(false)
Auth: :user()->can('permission-name');

JOURNAL OF IATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012

var_dump($allValidations);
// array(4) {

// ['role'] => bool (true)

// ['role_2'] => bool(false)

// ['create-post'] => bool (true)
// ['edit-user'] => bool(false)
/7 F

The Entrust class has a shortcut to ability() for the
currently logged in user:

Entrust::ability('admin,owner', 'create-post,edit-user');
// is identical to

Auth::user()->ability('admin,owner', 'create-post,edit-user');

V. CONCLUSION

Tough Laravel already provides with a good Authentica-
tion module, Entrust leverage it with a great Role-based
user management support.

ACKNOWLEDGMENT

The authors would like to thank God, Mr. Rinaldi, my
parent, and my friends that are supporting me to make
this paper.

REFERENCES

[1] Entrust Package https://github.com/Zizaco/entrust
[2] Laravel hitps://laravel.com
Laravel Authentication https://laravel.com/docs/5.4/authentication

	Introduction
	Entrust Package
	Installation

	Configuration
	User relation to roles

	Usage
	Conclusion
	References

