
Building Data Processing Pipeline for
Recommender System Using Scala and Apache

Kafka

Febi Agil Ifdillah (13514010)
Informatics/Computer Science

School of Electrical Engineering and Informatics
Bandung Institute of Technology, Ganeca St. 10 Bandung 40132, Indonesia

febi_agil@students.itb.ac.id

Abstract—As the data growing in high-volume and
high-velocity, businesses trying to compete each other and make
themselves profitable by using it. They use it to know more about
their customers so they could target the customer better. They
learn about customers using Recommender System. With
recommender system, businesses could automate the learning
processes and provide affordable, personal, and high-quality
recommendations. But, recommender system can not do its job
without sufficient data. The RAW data itself, can not fed directly
into the learning algorithm. So the data needs to processed in
data processing pipeline to extract the data, transform it into
much more readable format, and finally load the data so the
algorithm could use it. By combining some tools and technologies
like Scala, Java, MongoDB, Kafka, Spark, and Akka we could
build this data processing pipeline with ease.

Keywords—Big data; recommender system; data pipeline

I. INTRODUCTION

Currently, we produce as much data as we did from the
dawn of civilization up until 2003 in just within two days[4].
The data mostly comes from user generated content like status
in social media, chat history, and search history. All of the
data together becomes so immense that is too difficult to
process using traditional methods, such as databases and
software. Such phenomena called big data.

There are hidden treasures on those data, ready to be
found, for businesses that can successfully process it into
information and analyze it to gather insight and act based upon
what they found. Current technologies supports automation of
such processes so that we could catch up with the

ever-growing data with high-velocity property like that.

Now, businesses compete each other out by improving
operational practices by identifying problems that may exist
using Big Data. Another implementation of such technology is
finding the pattern of customer behaviour and preferences, so
they can better target them.

Every one of us is unique. Yet there are many people
around the world similar to us. We have our own preferences
upon items, we want to be different. But the fact is many of us
liking the same thing, interacting with the same people, even
exhibiting the same behaviour. It makes us very predictable.

Businesses around the world using that very fact to be
more profitable. They learn about us using Recommender
System. Basically, it uses to filter what statistically is most
relevant for a particular user. Recommender systems automate
some of these strategies with the goal of providing affordable,
personal, and high-quality recommendations[1]. It is
pervasive, it has impacted or even redefined our lives in many
ways.

We could build good recommender system that will
produce sensible recommendations by answer the following
questions[2]:

1. What kind of learning algorithm should we run on
this dataset to make good recommendations?

2. What data representations does this algorithm expect?
3. How will the data be fed into this algorithm

overtime?

A typical Recommender system cannot do its job without

Paper for IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

sufficient data. It is also very critical to supply the best data
possible to make Recommender system effective. That being
said, data is important. So, author’s focus in this paper is to
build a data processing pipeline. All of the code used in this
paper is forked from Building a Recommendation Engine with
Scala Book’s example code.

II. TOOLS AND DATASET

A. Java

Java is a programming language and computing platform
first released by Sun Microsystems in 1995. Java provides a
system for developing application software and deploying it in
a cross-platform computing environment. We will need JDK
already installed in order to run Scala.

B. Scala
In this paper, the author used Scala version 2.11.x that can

be downloaded here: http://scala-lang.org/download. Scala is
an acronym for “Scalable Language”. Scala used in many
critical systems, as many companies, including Twitter,
LinkedIn, or Intel. In order to handle ever-growing data, we
need to have a system that can handle the challenges of
scalability, so, Scala will be the right language to choose.
Moreover, it runs on JVM, so it offers a good balance between
productivity and performance.

C. SBT
SBT is an open source build tool for Scala and Java

projects, similar to Java's Maven or Ant. It is adopted by the
majority of Scala’s developer for building and managing a
Scala project and its dependencies.

D. MongoDB
MongoDB uses JSON-like documents with schemas and

classified as a NoSQL database program. It is free and open
source, and document-oriented database program. We use
MongoDB for data persistence and querying.

E. Apache Kafka
Apache Software Foundation developed an open-source

stream processing platform written in Scala and Java, called
Apache Kafka. We use Kafka for high performance
persistence queuing.

F. Apache Spark
The uses of Spark in this project is to achieve our goals for

high throughput stream processing.

G. Akka
Akka is a toolkit and runtime for building highly

concurrent, distributed, and resilient message-driven
applications on the JVM. We used it for message based
concurrence to delegate as much as we could.

H. Entree Dataset
Entree dataset is a Restaurant data, that is well formed, and

case-based recommender system dataset. It can processed by
any text processing tool and has interesting cases and problem
to solve. It can be downloaded here:
https://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recom
mendation+Data

III. BUILDING THE DATA PROCESSING PIPELINE

1. Extract-Transform-Load
We divide the data processing phase into three stages:

extract, transform, and load. It is essential that the data we
supply to the learning algorithm is clean. That being said, we
need to focused the effort in cleaning and organizing data.
This kind of pattern in processing data helps us in separating
three big concerns of a data mining[2].

At the first stage, we gather data from all over the sources.
The data obtained could be from different data-sources. It
could be from web-server logs, database server, and any other
sources. In our cases, which is restaurant data, it could be
anything that is related to restaurant. It might be PDF
document or Excel file. We need to extract the data out of
these files.

The second stage is transforming data. It is important to
note that we should map the data to a machine readable form.
Finally, after the data is processed and cleaned we could load
it into a data store.

2. Data processing pipeline for Entree

We want to design and build a pipeline that will allow the
learning algorithm to keep learning as soon as new data
arrives, and will allow us to look up the data on demand. With
that said, we should choose tools that is suitable for such
goals. We would use the tools we chose from the previous
chapter, namely : Akka, MongoDB, Apache Kafka, Apache
Sprak, Scala, and Java. The flow of the data would be like the
following illustration:

Paper for IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

https://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recommendation+Data
http://scala-lang.org/download
https://archive.ics.uci.edu/ml/datasets/Entree+Chicago+Recommendation+Data

Entree dataset text files -> Akka -> MongoDB -> Apache
Kafka -> Apache Spark.

To get much clearer and bigger picture, lets see the following
picture:

Illustration 1 - Entree Data Processing Pipeline. Adapted from Ansari,
Saleem. Building a Recommender Engine with Scala, Packt Publishing, 2016.

First of all, ensure that both Kafka and MongoDB servers

are running, then let’s see some output now.

Illustration 2 - Starting Kafka and MongoDB server, and build the Scala
Program using SBT

Or we could see it in text version:

agilajah@febiagil:~/Workspaces/scala/socif$ sbt 'run-main
socif.EntreeDatasetPipeline
/home/agilajah/Workspaces/scala/socif/entree'
[warn] Executing in batch mode.
[warn] For better performance, hit [ENTER] to switch to
interactive mode, or
[warn] consider launching sbt without any commands, or
explicitly passing 'shell'
[info] Loading project definition from
/home/agilajah/Workspaces/scala/socif/project
[info] Set current project to
BuildingLuminoRecommendationEngine (in build

file:/home/agilajah/Workspaces/scala/socif/)
[info] Running socif.EntreeDatasetPipeline
/home/agilajah/Workspaces/scala/socif/entree
log4j:WARN No appenders could be found for logger
(com.mongodb.casbah.commons.conversions.scala.Register
ConversionHelpers$).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See
http://logging.apache.org/log4j/1.2/faq.html#noconfig for
more info.
=== MessageProducer starting up:
path=akka://system/user/$a/messageProducer ===
Number of restuarants: 4160
List(session.1997-Q4, session.1999-Q1, session.1999-Q2,
session.1998-Q3, session.1998-Q4, session.1998-Q2,
session.1997-Q2, session.1998-Q1, session.1996-Q4,
session.1997-Q3, session.1997-Q1, session.1996-Q3)
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1997-Q4
 Number of recorded sessions: 3534
Using Spark's default log4j profile:
org/apache/spark/log4j-defaults.properties
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1999-Q1
 Number of recorded sessions: 6838
17/05/05 21:41:24 INFO Remoting: Starting remoting
17/05/05 21:41:25 INFO Remoting: Remoting started;
listening on addresses
:[akka.tcp://sparkDriver@192.168.43.135:44065]
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1999-Q2
 Number of recorded sessions: 1299
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1998-Q3
 Number of recorded sessions: 4848
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1998-Q4
 Number of recorded sessions: 7956
Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1998-Q2
 Number of recorded sessions: 5502

Paper for IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

Loading session from:
/home/agilajah/Workspaces/scala/socif/entree/session/sessio
n.1997-Q2
 Number of recorded sessions: 4002

Next batch...

(SKIPPED OUTPUT)

While the pipeline is running, we could also inspect what
happen with the MongoDB instance we created. The data
should be populated there, too.

Illustration 3 - Data processed by kafka also populated in MongoDB database
instance

IV. CONCLUSION

Data is very important. It is very critical to supply the best
data possible to make Recommender system effective. The
phase of data processing itself can be divided into three stages,
namely extraction, transformation, and load the data to data
storage. This kind of pattern in processing data helps us in
separating three big concerns of a data mining. By combining
Apache Spark, Apache Kafka, Scala, Akka, and MongoDB,
we could compose a complete data processing pipeline with
ease.

ACKNOWLEDGEMENT

I would like to say Alhamdulillah to Allah for His

guidance and blessing so that I was able to finish writing this
paper. My million thanks to my parents for everything they
have done for me. I would also say thanks to Dr. Ir. Rinaldi
Munir, MT., Dr. Eng. Ayu Purwarianti, St., MT., and Dessi
Puji Lestari ST,M.Eng.,Ph.D. for their patience in teaching
me.

REFERENCES

[1] Jannach, Dietmar, et al. Recommender systems: an

introduction. Cambridge University Press, 2010.

[2] Ansari, Saleem. Building a Recommender Engine with
Scala. Packt Publishing, 2016

[3] Aggarwal, Charu C. Recommender System: The textbook.
Springer, 2016.

[4] https://techcrunch.com/2010/08/04/schmidt-data/. Every 2
Days We Create As Much Information As We Did Up To
2003. Accessed at Friday, May 5th 2017. 07.00 P.M.

DECLARATION

I hereby declare that the paper is my own writing, not an
adaptation, nor translation from another person’s paper, and
not a form of plagiarism.

Bandung, May 5th 2017

Febi Agil Ifdillah (13514010)

Paper for IF3280 Socio-Informatics and Professionalism, 2nd Semester of 2016/2017

https://techcrunch.com/2010/08/04/schmidt-data/

